TY - JOUR A1 - Franko, Josef A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Duelberg, Enno Sebastian A1 - Engemann, Heiko T1 - Design of a Multi-Robot System for Wind Turbine Maintenance JF - Energies N2 - The maintenance of wind turbines is of growing importance considering the transition to renewable energy. This paper presents a multi-robot-approach for automated wind turbine maintenance including a novel climbing robot. Currently, wind turbine maintenance remains a manual task, which is monotonous, dangerous, and also physically demanding due to the large scale of wind turbines. Technical climbers are required to work at significant heights, even in bad weather conditions. Furthermore, a skilled labor force with sufficient knowledge in repairing fiber composite material is rare. Autonomous mobile systems enable the digitization of the maintenance process. They can be designed for weather-independent operations. This work contributes to the development and experimental validation of a maintenance system consisting of multiple robotic platforms for a variety of tasks, such as wind turbine tower and rotor blade service. In this work, multicopters with vision and LiDAR sensors for global inspection are used to guide slower climbing robots. Light-weight magnetic climbers with surface contact were used to analyze structure parts with non-destructive inspection methods and to locally repair smaller defects. Localization was enabled by adapting odometry for conical-shaped surfaces considering additional navigation sensors. Magnets were suitable for steel towers to clamp onto the surface. A friction-based climbing ring robot (SMART— Scanning, Monitoring, Analyzing, Repair and Transportation) completed the set-up for higher payload. The maintenance period could be extended by using weather-proofed maintenance robots. The multi-robot-system was running the Robot Operating System (ROS). Additionally, first steps towards machine learning would enable maintenance staff to use pattern classification for fault diagnosis in order to operate safely from the ground in the future. Y1 - 2020 U6 - https://doi.org/10.3390/en13102552 SN - 1996-1073 VL - 13 IS - 10 SP - Article 2552 PB - MDPI CY - Basel ER - TY - JOUR A1 - Choi, Chang-Hoon A1 - Felder, Tim A1 - Felder, Jörg A1 - Tellmann, Lutz A1 - Hong, Suk-Min A1 - Wegener, Hans-Peter A1 - Shah, N Jon A1 - Ziemons, Karl T1 - Design, evaluation and comparison of endorectal coils for hybrid MR-PET imaging of the prostate JF - Physics in Medicine & Biology N2 - Prostate cancer is one of the most common cancers among men and its early detection is critical for its successful treatment. The use of multimodal imaging, such as MR-PET, is most advantageous as it is able to provide detailed information about the prostate. However, as the human prostate is flexible and can move into different positions under external conditions, it is important to localise the focused region-of-interest using both MRI and PET under identical circumstances. In this work, we designed five commonly used linear and quadrature radiofrequency surface coils suitable for hybrid MR-PET use in endorectal applications. Due to the endorectal design and the shielded PET insert, the outer face of the coils investigated was curved and the region to be imaged was outside the volume of the coil. The tilting angles of the coils were varied with respect to the main magnetic field direction. This was done to approximate the various positions from which the prostate could be imaged. The transmit efficiencies and safety excitation efficiencies from simulations, together with the signal-to-noise ratios from the MR images were calculated and analysed. Overall, it was found that the overlapped loops driven in quadrature were superior to the other types of coils we tested. In order to determine the effect of the different coil designs on PET, transmission scans were carried out, and it was observed that the differences between attenuation maps with and without the coils were negligible. The findings of this work can provide useful guidance for the integration of such coil designs into MR-PET hybrid systems in the future. Y1 - 2020 U6 - https://doi.org/10.1088/1361-6560/ab87f8 SN - 0031-9155 VL - 65 IS - 11 PB - IOP CY - Bristol ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Vahidpour, Farnoosh A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide JF - Sensor and Actuators A: Physical N2 - Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor–pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues. Y1 - 2020 U6 - https://doi.org/10.1016/j.sna.2019.111691 SN - 0924-4247 VL - 303 IS - 111691 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hailer, Benjamin A1 - Weber, Tobias A1 - Neveling, Sebastian A1 - Dera, Samuel A1 - Arent, Jan-Christoph A1 - Middendorf, Peter T1 - Development of a test device to determine the frictional behavior between honeycomb and prepreg layers under realistic manufacturing conditions JF - Journal of Sandwich Structures & Materials N2 - In the friction tests between honeycomb with film adhesive and prepreg, the relative displacement occurs between the film adhesive and the prepreg. The film adhesive does not shift relative to the honeycomb. This is consistent with the core crush behavior where the honeycomb moves together with the film adhesive, as can be seen in Figure 2(a). The pull-through forces of the friction measurements between honeycomb and prepreg at 1 mm deformation are plotted in Figure 17(a). While the friction at 100°C is similar to the friction at 120°C, it decreases significantly at 130°C and exhibits a minimum at 140°C. At 150°C, the friction rises again slightly and then sharply at 160°C. Since the viscosity of the M18/1 prepreg resin drops significantly before it cures [23], the minimum friction at 140°C could result from a minimum viscosity of the mixture of prepreg resin and film adhesive before the bond subsequently cures. Figure 17(b) shows the mean value curve of the friction measurements at 140°C. The error bars, which represent the standard deviation, reveal the good repeatability of the tests. The force curve is approximately horizontal between 1 mm and 2 mm. The friction then slightly rises. As with interlaminar friction measurements, this could be due to the fact that resin is removed by friction and the proportion of boundary lubrication increases. Figure 18 shows the surfaces after the friction measurement. The honeycomb cell walls are clearly visible in the film adhesive. There are areas where the film adhesive is completely removed and the carrier material of the film adhesive becomes visible. In addition, the viscosity of the resin changes as the curing progresses during the friction test. This can also affect the force-displacement curve. Y1 - 2020 U6 - https://doi.org/10.1177/1099636220923986 SN - 1530-7972 IS - Volume 23, Issue 7 SP - 3017 EP - 3043 PB - Sage CY - London ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS) JF - Physics in Medicine N2 - Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO–K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO–K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images. Y1 - 2020 U6 - https://doi.org/10.1016/j.phmed.2020.100030 SN - 2352-4510 VL - 10 IS - 100030 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Capitain, Charlotte A1 - Ross-Jones, Jesse A1 - Möhring, Sophie A1 - Tippkötter, Nils T1 - Differential scanning calorimetry for quantification of polymer biodegradability in compost JF - International Biodeterioration & Biodegradation N2 - The objective of this study is the establishment of a differential scanning calorimetry (DSC) based method for online analysis of the biodegradation of polymers in complex environments. Structural changes during biodegradation, such as an increase in brittleness or crystallinity, can be detected by carefully observing characteristic changes in DSC profiles. Until now, DSC profiles have not been used to draw quantitative conclusions about biodegradation. A new method is presented for quantifying the biodegradation using DSC data, whereby the results were validated using two reference methods. The proposed method is applied to evaluate the biodegradation of three polymeric biomaterials: polyhydroxybutyrate (PHB), cellulose acetate (CA) and Organosolv lignin. The method is suitable for the precise quantification of the biodegradability of PHB. For CA and lignin, conclusions regarding their biodegradation can be drawn with lower resolutions. The proposed method is also able to quantify the biodegradation of blends or composite materials, which differentiates it from commonly used degradation detection methods. Y1 - 2020 U6 - https://doi.org/10.1016/j.ibiod.2020.104914 SN - 0964-8305 VL - 149 SP - In Press, Article number 104914 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hüning, Felix A1 - Backes, Andreas T1 - Direct observation of large Barkhausen jump in thin Vicalloy wires JF - IEEE Magnetics Letters Y1 - 2020 SN - 1949-307X U6 - https://doi.org/10.1109/LMAG.2020.3046411 VL - 11 IS - Art. 2506504 SP - 1 EP - 4 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Tran, Ngoc Trinh A1 - Staat, Manfred T1 - Direct plastic structural design under lognormally distributed strength by chance constrained programming JF - Optimization and Engineering N2 - We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements. Y1 - 2020 U6 - https://doi.org/10.1007/s11081-019-09437-2 SN - 1573-2924 VL - 21 IS - 1 SP - 131 EP - 157 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Rupp, Matthias A1 - Rieke, Christian A1 - Handschuh, Nils A1 - Kuperjans, Isabel T1 - Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities JF - Transportation Research Part D: Transport and Environment N2 - In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power. Y1 - 2020 U6 - https://doi.org/10.1016/j.trd.2020.102293 SN - 1361-9209 VL - 81 IS - Article 102293 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kleefeld, Andreas A1 - Pieronek, J. T1 - Elastic transmission eigenvalues and their computation via the method of fundamental solutions JF - Applicable Analysis N2 - A stabilized version of the fundamental solution method to catch ill-conditioning effects is investigated with focus on the computation of complex-valued elastic interior transmission eigenvalues in two dimensions for homogeneous and isotropic media. Its algorithm can be implemented very shortly and adopts to many similar partial differential equation-based eigenproblems as long as the underlying fundamental solution function can be easily generated. We develop a corroborative approximation analysis which also implicates new basic results for transmission eigenfunctions and present some numerical examples which together prove successful feasibility of our eigenvalue recovery approach. KW - elastic scattering KW - method of fundamental solutions KW - Interior transmission eigenvalues Y1 - 2020 U6 - https://doi.org/10.1080/00036811.2020.1721473 SN - 1563-504X VL - 100 IS - 16 SP - 3445 EP - 3462 PB - Taylore & Francis CY - London ER -