TY - CHAP A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef ED - Abdelghani, Adnane ED - Schöning, Michael Josef T1 - Biopolymer-degradation monitoring by chip-­based impedance spectroscopy technique T2 - Nanoscale Science and Technology (NS&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012 Y1 - 2012 SP - 47 EP - 47 ER - TY - JOUR A1 - Biselli, Manfred A1 - Hilbert, U. A1 - Jelinek, N. A1 - Schmidt, S. T1 - Bioprocess development for the cultivation of human T-lymphocytes / Hilbert, U. ; Jelinek, N. Schmidt, S. ; Biselli, M. JF - Engineering in Life Sciences. 1 (2001) Y1 - 2001 SN - 1618-0240 SP - 20 EP - 23 ER - TY - BOOK A1 - Wagemann, Kurt A1 - Tippkötter, Nils T1 - Biorefineries / Kurt Wagemann, Nils Tippkötter (editors) T3 - Advances in biochemical engineering/biotechnology book series (ABE) Y1 - 2019 SN - 978-3-319-97117-9 SN - 978-3-319-97119-3 U6 - http://dx.doi.org/10.1007/978-3-319-97119-3 PB - Springer CY - Cham (Switzerland) ER - TY - CHAP A1 - Wagemann, Kurt A1 - Tippkötter, Nils T1 - Biorefineries: a short introduction T2 - Biorefineries N2 - The terms bioeconomy and biorefineries are used for a variety of processes and developments. This short introduction is intended to provide a delimitation and clarification of the terminology as well as a classification of current biorefinery concepts. The basic process diagrams of the most important biorefinery types are shown. KW - Bioeconomy KW - Biorefinery definitions KW - Introduction KW - Process schemes KW - Renewable resources Y1 - 2019 SN - 978-3-319-97117-9 SN - 978-3-319-97119-3 U6 - http://dx.doi.org/10.1007/10_2017_4 N1 - (Advances in Biochemical Engineering/Biotechnology book series ; Vol. 166) SP - 1 EP - 11 PB - Springer CY - Cham ER - TY - JOUR A1 - Oliveira, Danilo A. A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Siqueira Jr, José R. A1 - Schöning, Michael Josef T1 - Biosensor Based on Self-Assembled Films of Graphene Oxide and Polyaniline Using a Field-Effect Device Platform JF - physica status solidi (a) applications and materials science N2 - A new functionalization method to modify capacitive electrolyte–insulator–semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS–nanofilm–enzyme) of around 15% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS–enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability. KW - capacitive electrolyte–insulator–semiconductor sensors KW - graphene oxide KW - layer-by-layer technique KW - nanomaterials KW - polyaniline Y1 - 2021 U6 - http://dx.doi.org/10.1002/pssa.202000747 SN - 1862-6319 N1 - Corresponding author: José R. Siqueira Jr & Michael J. Schöning VL - 218 IS - 13 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Lei, Yu A1 - Mulchandani, Priti A1 - Chen, Wilfred A1 - Mulchandani, Ashok T1 - Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface expressed organophosphorus hydrolase. 1. modified clark oxygen electrode N2 - This paper reports a first microbial biosensor for rapid and cost-effective determination of organophosphorus pesticides fenitrothion and EPN. The biosensor consisted of recombinant PNP-degrading/oxidizing bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorus hydrolase (OPH) on its cell surface as biological sensing element and a dissolved oxygen electrode as the transducer. Surfaceexpressed OPH catalyzed the hydrolysis of fenitrothion and EPN to release 3-methyl-4-nitrophenol and p-nitrophenol, respectively, which were oxidized by the enzymatic machinery of Pseudomonas putida JS444 to carbon dioxide while consuming oxygen, which was measured and correlated to the concentration of organophosphates. Under the optimum operating conditions, the biosensor was able to measure as low as 277 ppb of fenitrothion and 1.6 ppm of EPN without interference from phenolic compounds and other commonly used pesticides such as carbamate pesticides, triazine herbicides and organophosphate pesticides without nitrophenyl substituent. The applicability of the biosensor to lake water was also demonstrated. KW - Biosensor KW - Organophosphorus KW - fenitrothion KW - EPN KW - biosensor KW - Pseudomonas putida Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1573 ER - TY - JOUR A1 - Keusgen, Michael A1 - Jünger, Martina A1 - Krest, Ingo A1 - Schöning, Michael Josef T1 - Biosensoric detection of the cysteine sulphoxide alliin JF - Sensors and Actuators B. 95 (2003), H. 1-3 Y1 - 2003 SN - 0925-4005 SP - 297 EP - 302 ER - TY - JOUR A1 - Keusgen, M. A1 - Jünger, M. A1 - Schöning, Michael Josef T1 - Biosensoric detection of the cysteine sulphoxide alliin JF - Book of abstracts / ed. by J. Saneistr. Y1 - 2002 SN - 80-01-02576-4 N1 - Eurosensors ; (16, 2002, Praha) SP - 1175 EP - 1178 PB - Czech Technical University, Faculty of Electrical Engineering, Department of Measurement CY - Prague ER - TY - JOUR A1 - Paczkowski, Sebastian A1 - Weißbecker, Bernhard A1 - Schöning, Michael Josef A1 - Schütz, Stefan T1 - Biosensors on the Basis of Insect Olfaction JF - Insect biotechnology / Andreas Vilcinskas, ed. Y1 - 2011 SN - 978-90-481-9640-1 N1 - Biologically-inspired system ; 2 SP - 225 EP - 240 PB - Springer CY - Dordrecht [u.a.] ER - TY - JOUR A1 - Al-Kaidy, Huschyar A1 - Duwe, Anna A1 - Huster, Manuel A1 - Muffler, Kai A1 - Schlegel, Christin A1 - Tim, Sieker A1 - Stadtmüller, Ralf A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Biotechnology and bioprocess engineering – from the first ullmann's article to recent trends JF - ChemBioEng Reviews N2 - For several thousand years, biotechnology and its associated technical processes have had a great impact on the development of mankind. Based on empirical methods, in particular for the production of foodstuffs and daily commodities, these disciplines have become one of the most innovative future issues. Due to the increasing detailed understanding of cellular processes, production strains can now be optimized. In combination with modern bioprocesses, a variety of bulk and fine chemicals as well as pharmaceuticals can be produced efficiently. In this article, some of the current trends in biotechnology are discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/cben.201500008 VL - 2 IS - 3 SP - 175 EP - 184 PB - Wiley CY - Weinheim ER -