TY - BOOK A1 - Chwallek, Constanze A1 - Felden, Birgit T1 - RatingCheck : Wertschöpfungskette / Chwallek, Constanze ; Felden, Birgit Y1 - 2006 PB - Deutscher Sparkassen Verlag CY - Stuttgart ER - TY - CHAP A1 - Kurz, Melanie T1 - Recognition of shape in virtual visualizations T2 - Proceedings : November 15 - 17, 2006, Technische Universität Darmstadt, Darmstadt, Germany ; PACE, Partners for the advancement of collaborative engineering education Y1 - 2006 SN - 978-3-00-020161-5 N1 - International PACE Forum Collaborative Visualization ; (2006, Darmstadt) SP - 203 EP - 209 PB - Techn. Univ. CY - Darmstadt ER - TY - CHAP A1 - Sakthivel, Mariappan A1 - Weppner, Werner T1 - Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method N2 - A solid-state amperometric hydrogen sensor based on a protonated Nafion membrane and catalytic active electrode operating at room temperature was fabricated and tested. Ionic conducting polymer-metal electrode interfaces were prepared chemically by using the impregnation-reduction method. The polymer membrane was impregnated with tetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced by using either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensing characteristics with air as reference gas is reported. The sensors were capable of detecting hydrogen concentrations from 10 ppm to 10% in nitrogen. The response time was in the range of 10-30 s and a stable linear current output was observed. The thin Pt films were characterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy and EDAX. KW - Biosensor KW - Hydrogen sensor KW - amperometric sensor KW - porous Pt electrode KW - chemical reduction method Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1399 ER - TY - CHAP A1 - Kraft, Bodo A1 - Retkowitz, Daniel T1 - Rule-Dependencies for Visual Knowledge Specification in Conceptual Design N2 - In: Proc. of the 11th Intl. Conf. on Computing in Civil and Building Engineering (ICCCBE-XI) ed. Hugues Rivard, Montreal, Canada, Seite 1-12, ACSE (CD-ROM), 2006 Currently, the conceptual design phase is not adequately supported by any CAD tool. Neither the support while elaborating conceptual sketches, nor the automatic proof of correctness with respect to effective restrictions is currently provided by any commercial tool. To enable domain experts to store the common as well as their personal domain knowledge, we develop a visual language for knowledge formalization. In this paper, a major extension to the already existing concepts is introduced. The possibility to define rule dependencies extends the expressiveness of the knowledge definition language and contributes to the usability of our approach. KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2006 ER - TY - JOUR A1 - Krebsbach, M. A1 - Schiller, C. A1 - Brunner, D. A1 - Günther, G. A1 - Hegglin, M. I. A1 - Mottaghy, Darius A1 - Riese, M. A1 - Spelten, N. A1 - Wernli, H. T1 - Seasonal cycles and variability of O_3 and H_2O in the UT/LMS during SPURT JF - Atmospheric Chemistry and Physics Y1 - 2006 U6 - https://doi.org/10.5194/acp-6-109-2006 VL - 6 IS - 1 SP - 109 EP - 125 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Mistler, Michael T1 - Seismic resistance of unreinforced masonry buildings T2 - Proceedings of the Eighth International Conference on Computational Structures Technology : [Las Palmas de Cran Canaria, 12-15 September 2006] / ed. by B. H. V. Topping ... Y1 - 2006 SN - 1-905088-06-X U6 - https://doi.org/10.4203/ccp.83.9 SP - Paper 9 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz A1 - Seboldt, Wolfgang A1 - Dachwald, Bernd A1 - Streppel, Joern A1 - Meusemann, Hans A1 - Schülke, Peter T1 - SEP for a lander mission to the jovian moon europa T2 - 57th International Astronautical Congress N2 - Under DLR-contract, Giessen University and DLR Cologne are studying solar-electric propulsion missions (SEP) to the outer regions of the solar system. The most challenging reference mission concerns the transport of a 1.35-tons chemical lander spacecraft into an 80-RJ circular orbit around Jupiter, which would enable to place a 375 kg lander with 50 kg of scientific instruments on the surface of the icy moon "Europa". Thorough analyses show that the best solution in terms of SEP launch mass times thrusting time would be a two-stage EP module and a triple-junction solar array with concentrators which would be deployed step by step. Mission performance optimizations suggest to propel the spacecraft in the first EP stage by 6 gridded ion thrusters, running at 4.0 kV of beam voltage, which would save launch mass, and in the second stage by 4 thrusters with 1.25 to 1.5 kV of positive high voltage saving thrusting time. In this way, the launch mass of the spacecraft would be kept within 5.3 tons. Without a launcher's C3 and interplanetary gravity assists, Jupiter might be reached within about 4 yrs. The spiraling-down into the parking orbit would need another 1.8 yrs. This "large mission" can be scaled down to a smaller one, e.g., by halving all masses, the solar array power, and the number of thrusters. Due to their reliability, long lifetime and easy control, RIT-22 engines have been chosen for mission analysis. Based on precise tests, the thruster performance has been modeled. Y1 - 2006 U6 - https://doi.org/10.2514/6.IAC-06-C4.4.04 N1 - 57th International Astronautical Congress, 02 October 2006 - 06 October 2006, Valencia, Spain. SP - 1 EP - 12 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Silicon-based chemical and biological field-effect sensors T2 - Encyclopedia of Sensors. Vol. 9 S - Sk Y1 - 2006 SN - 1-58883-065-9 SP - 463 EP - 534 PB - ASP, American Scientific Publ. CY - Stevenson Ranch, Calif. ER - TY - CHAP A1 - Barek, Jiri A1 - Fischer, Jan A1 - Navratil, Tomas A1 - Peckova, Karolina A1 - Yosypchuk, Bogdan T1 - Silver solid amalgam electrodes as sensors for chemical carcinogens N2 - The applicability of differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) at a non-toxic meniscus-modified silver solid amalgam electrode (m-AgSAE) for the determination of trace amounts of genotoxic substances was demonstrated on the determination of micromolar and submicromolar concentrations of 3-nitrofluoranthene using methanol - 0.01 mol L-1 NaOH (9:1) mixture as a base electrolyte and of Ostazine Orange using 0.01 mol L-1 NaOH as a base electrolyte. KW - Biosensor KW - Solid amalgam electrodes KW - voltammetry KW - carcinogens KW - 3-nitrofluoranthene KW - Ostazine Orange Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1554 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Solar sail Kinetic Energy Impactor (KEI) mission design tradeoffs for impacting and deflecting asteroid 99942 Apophis T2 - AIAA/AAS Astrodynamics Specialist Conference and Exhibit N2 - Near-Earth asteroid 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several so-called gravitational keyholes during its 2029-encounter. Several pre-2029-deflection scenarios to prevent Apophis from doing this have been investigated so far. Because the keyholes are less than 1 km in size, a pre-2029 kinetic impact is clearly the best option because it requires only a small change in Apophis' orbit to nudge it out of a keyhole. A single solar sail Kinetic Energy Impactor (KEI) spacecraft that impacts Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages at about 0.75 AU would be a feasible option to do this. The spacecraft consists of a 160 m x 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. In this paper, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, solar sail Kinetic Energy Impactor (KEI) spacecraft are still a feasible option to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value. In this paper, we elaborate potential pre- and post-2029 KEI impact scenarios for a launch in 2020, and investigate tradeoffs between different mission parameters. KW - Solar Sail KW - Asteroid Deflection KW - Planetary Protection KW - Trajectory Optimization Y1 - 2006 U6 - https://doi.org/10.2514/6.2006-6178 N1 - AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 21 August 2006 - 24 August 2006, Keystone, Colorado(USA). SP - 1 EP - 20 ER -