TY - JOUR A1 - Gerhardt, Hans Joachim T1 - RWA-Einbau in Gebäudewänden JF - Brandschutz in öffentlichen und privaten Gebäuden (1999) Y1 - 1999 SP - 46 EP - 48 ER - TY - JOUR A1 - Lasai, Sven A1 - Kolm, Heiko A1 - Wahle, Michael A1 - Pohl, Reiner T1 - Schwingungsanalyse von Subsystemen mit Hilfe der Simulation JF - Automobiltechnische Zeitschrift - ATZ Y1 - 2000 SN - 0001-2785 VL - 102 IS - 4 SP - 266 EP - 270 ER - TY - PAT A1 - Burlage, Thomas A1 - Hörauf, Martin A1 - Klandt, Michael A1 - Wahle, Michael T1 - Schwingungsdämpfer : Offenlegungsschrift T1 - Friction damper having an elastomer spring element : patent of invention Y1 - 1998 N1 - Deutscher Titel der Europäischen Patentanmeldung: Reibungsdämpfer mit einem Elastomerfederelement PB - Deutsches Patent- und Markenamt / Europäisches Patentamt CY - München / Den Hague ER - TY - CHAP A1 - Waldmann, Christoph A1 - Vera, Jean-Pierre de A1 - Dachwald, Bernd A1 - Strasdeit, Henry A1 - Sohl, Frank A1 - Hanff, Hendrik A1 - Kowalski, Julia A1 - Heinen, Dirk A1 - Macht, Sabine A1 - Bestmann, Ulf A1 - Meckel, Sebastian A1 - Hildebrandt, Marc A1 - Funke, Oliver A1 - Gehrt, Jan-Jöran T1 - Search for life in ice-covered oceans and lakes beyond Earth T2 - 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761 N2 - The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent. KW - Planetary exploration KW - Jupiter KW - ice moons KW - underwater vehicle KW - Antarctica Y1 - 2018 U6 - https://doi.org/10.1109/AUV.2018.8729761 ER - TY - BOOK A1 - Ley, Wilfried T1 - Seilgefesselte Raumflugkörper, -Tethertechnik- : Gemeinschaftsveranstaltung der FH Aachen und der DGLR ... / 3. Raumfahrt-Kolloquium an der Fachhochschule Aachen, 13. Dezember 1990. [Wiss. Programmleitung: W. Ley, W. Hallmann] Y1 - 1990 SN - 3-922010-59-8 PB - DGLR CY - Bonn ER - TY - JOUR A1 - Finger, Felix T1 - Senkrechtstarter: FH-Absolvent wird für Transportdrohne ausgezeichnet JF - campushunter: das etwas andere Karrieremagazin - Wintersemester 16/17 Y1 - 2016 SN - 2196-9426 IS - 17. Regionalausgabe Aachen SP - 116 EP - 117 PB - Campushunter Media CY - Heidelberg ER - TY - CHAP A1 - Rings, René A1 - Ludowicy, Jonas A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Sensitivity Analysis of General Aviation Aircraft with Parallel Hybrid-Electric Propulsion Systems T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 ER - TY - JOUR A1 - Bühler, Yves A1 - Christen, Marc A1 - Kowalski, Julia A1 - Bartelt, Perry T1 - Sensitivity of snow avalanche simulations to digital elevation model quality and resolution JF - Annals of Glaciology N2 - Digital elevation models (DEMs), represent the three-dimensional terrain and are the basic input for numerical snow avalanche dynamics simulations. DEMs can be acquired using topographic maps or remote-sensing technologies, such as photogrammetry or lidar. Depending on the acquisition technique, different spatial resolutions and qualities are achieved. However, there is a lack of studies that investigate the sensitivity of snow avalanche simulation algorithms to the quality and resolution of DEMs. Here, we perform calculations using the numerical avalance dynamics model RAMMS, varying the quality and spatial resolution of the underlying DEMs, while holding the simulation parameters constant. We study both channelized and open-terrain avalanche tracks with variable roughness. To quantify the variance of these simulations, we use well-documented large-scale avalanche events from Davos, Switzerland (winter 2007/08), and from our large-scale avalanche test site, Valĺee de la Sionne (winter 2005/06). We find that the DEM resolution and quality is critical for modeled flow paths, run-out distances, deposits, velocities and impact pressures. Although a spatial resolution of ~25 m is sufficient for large-scale avalanche modeling, the DEM datasets must be checked carefully for anomalies and artifacts before using them for dynamics calculations. KW - snow KW - avalanche Y1 - 2011 SN - 1727-5644 VL - 52 IS - 58 SP - 72 EP - 80 PB - Cambridge University Press CY - Cambridge ER - TY - CHAP A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz A1 - Seboldt, Wolfgang A1 - Dachwald, Bernd A1 - Streppel, Joern A1 - Meusemann, Hans A1 - Schülke, Peter T1 - SEP for a lander mission to the jovian moon europa T2 - 57th International Astronautical Congress N2 - Under DLR-contract, Giessen University and DLR Cologne are studying solar-electric propulsion missions (SEP) to the outer regions of the solar system. The most challenging reference mission concerns the transport of a 1.35-tons chemical lander spacecraft into an 80-RJ circular orbit around Jupiter, which would enable to place a 375 kg lander with 50 kg of scientific instruments on the surface of the icy moon "Europa". Thorough analyses show that the best solution in terms of SEP launch mass times thrusting time would be a two-stage EP module and a triple-junction solar array with concentrators which would be deployed step by step. Mission performance optimizations suggest to propel the spacecraft in the first EP stage by 6 gridded ion thrusters, running at 4.0 kV of beam voltage, which would save launch mass, and in the second stage by 4 thrusters with 1.25 to 1.5 kV of positive high voltage saving thrusting time. In this way, the launch mass of the spacecraft would be kept within 5.3 tons. Without a launcher's C3 and interplanetary gravity assists, Jupiter might be reached within about 4 yrs. The spiraling-down into the parking orbit would need another 1.8 yrs. This "large mission" can be scaled down to a smaller one, e.g., by halving all masses, the solar array power, and the number of thrusters. Due to their reliability, long lifetime and easy control, RIT-22 engines have been chosen for mission analysis. Based on precise tests, the thruster performance has been modeled. Y1 - 2006 U6 - https://doi.org/10.2514/6.IAC-06-C4.4.04 N1 - 57th International Astronautical Congress, 02 October 2006 - 06 October 2006, Valencia, Spain. SP - 1 EP - 12 ER - TY - CHAP A1 - Loeb, Horst Wolfgang A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - SEP-Sample return from a main belt asteroid T2 - 30th International Electric Propulsion Conference N2 - By DLR-contact, sample return missions to the large main-belt asteroid “19, Fortuna” have been studied. The mission scenario has been based on three ion thrusters of the RIT-22 model, which is presently under space qualification, and on solar arrays equipped with triple-junction GaAs solar cells. After having designed the spacecraft, the orbit-to-orbit trajectories for both, a one-way SEP mission with a chemical sample return and an all-SEP return mission, have been optimized using a combination of artificial neural networks with evolutionary algorithms. Additionally, body-to-body trajectories have been investigated within a launch period between 2012 and 2015. For orbit-to-orbit calculation, the launch masses of the hybrid mission and of the all-SEP mission resulted in 2.05 tons and 1.56 tons, respectively, including a scientific payload of 246 kg. For the related transfer durations 4.14 yrs and 4.62 yrs were obtained. Finally, a comparison between the mission scenarios based on SEP and on NEP have been carried out favouring clearly SEP. Y1 - 2007 SP - 1 EP - 11 ER -