TY - CHAP A1 - Arida, Hassan A. A1 - Kloock, Joachim P. A1 - Schöning, Michael Josef T1 - Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations N2 - A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thinfilm sensors. KW - Biosensor KW - Heavy metal detection KW - thin-film microsensors KW - organic PVC membranes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1545 ER - TY - CHAP A1 - Reisgen, Uwe A1 - Schleser, Markus A1 - Scheik, Sven A1 - Michaeli, Walter A1 - Grönlund, Oliver A1 - Neuß, Andreas A1 - Wunderle, Johannes A1 - Poprawe, Reinhart A1 - Rösner, A. A1 - Bobzin, Kirsten A1 - Schläfer, Thomas A1 - Theiß, Sebastian A1 - Kutschmann, Pia A1 - Haberstroh, Edmund A1 - Flock, Dustin A1 - Bührig-Polaczek, Andreas A1 - Jakob, M. ED - Thoben, Klaus-Dieter T1 - Novel process chains for the production of plastics/metal-hybrids T2 - 17th International Conference on Concurrent Enterprising (ICE 2011) : Aachen, Germany, 20 - 22 June 2011 Y1 - 2011 SN - 978-1-457-70772-8 ; 978-3-943024-05-0 SP - 596 EP - 604 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Wetter, Martin A1 - Kern, Alexander T1 - Number of lightning strikes to tall structures - comparison of calculations and measurements using a modern lightning monitoring system T2 - 2014 International Conference on Lightning Protection (ICLP), Shanghai, China Y1 - 2014 SP - 1 EP - 7 ER - TY - CHAP A1 - Marinova, V. A1 - Kerroumi, I. A1 - Lintermann, A. A1 - Göbbert, J.H. A1 - Moulinec, C. A1 - Rible, S. A1 - Fournier, Y. A1 - Behbahani, Mehdi T1 - Numerical Analysis of the FDA Centrifugal Blood Pump T2 - NIC Symposium 2016 Y1 - 2016 SN - 978-3-95806-109-5 SP - 355 EP - 364 ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Keinz, Jan A1 - Kusterer, K. A1 - Kroninger, D. A1 - Kitajima, J. A1 - Kazari, M. A1 - Horikama, A. T1 - Numerical and experimental characterization of low NOx Micromix combustion principle for industrial hydrogen gas turbine applications T2 - Proceedings of ASME Turbo Expo 2012 Y1 - 2013 N1 - ASME Turbo Expo 2012, GT2012, June 11-15, 2012, Copenhagen, Denmark ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications T2 - Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26–30, 2017 N2 - The Dry-Low-NOx (DLN) Micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The non-premixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 Vol.%) Micromix combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel Micromix combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas the evaluated dual-fuel Micromix prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs. Y1 - 2017 SN - 978-0-7918-5085-5 U6 - https://doi.org/10.1115/GT2017-64795 N1 - Paper No. GT2017-64795, V04BT04A045 PB - ASME CY - New York ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph A1 - Andreini, M. A1 - De Falco, A. A1 - Sassu, M. T1 - Numerical calibration of a macro-element for vaultes system in historic churches T2 - 9th International Conference on Structural Analyses of Historical Conctruction, 14 - 17 October, 2014, Mexico City Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Striegan, C. A1 - Haj Ayed, A. A1 - Funke, Harald A1 - Loechle, S. A1 - Kazari, M. A1 - Horikawa, A. A1 - Okada, K. A1 - Koga, K. T1 - Numerical combustion and heat transfer simulations and validation for a hydrogen fueled "micromix" test combustor in industrial gas turbine applications T2 - Proceedings of the ASME Turbo Expo Y1 - 2017 SN - 978-079185085-5 U6 - https://doi.org/10.1115/GT2017-64719 N1 - ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017; Charlotte; United States; 26 June 2017 through 30 June 2017 IS - Volume Part F130041-4B, 2017 ER - TY - CHAP A1 - Kowalski, Julia T1 - Numerical Debris Flow Simulation T2 - Schweizer Numerik Kolloquium : Book of Abstracts 12. April 2006 Y1 - 2006 ER - TY - CHAP A1 - Taddei, Francesca A1 - Reindl, Lukas A1 - Park, Jin A1 - Butenweg, Christoph A1 - Karadogan, Faruk T1 - Numerical investigation of AAC wall panels based on the damage plasticity constitutive law T2 - Cement, Wapno, Beton ; 2011, 7, Special issue: 5th International Conference on Autoclaved Aerated Concrete 'Securing a sustainable future' to be held at Bydgoszcz to celebrate 60 years of AAC experience in Poland, Bydgoszcz, September 14-17, 2011 Y1 - 2011 SN - 1425-8129 SP - 86 EP - 91 PB - Stowarzyszenie Producentów Cementu i Wapna CY - Krakow ER -