TY - JOUR A1 - Schlamann, Marc A1 - Yoon, Min-Suk A1 - Maderwald, Stefan A1 - Pietrzyk, Thomas A1 - Bitz, Andreas A1 - Gerwig, Marcus A1 - Forsting, Michael A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Kastrup, Oliver T1 - Short term effects of magnetic resonance imaging on excitability of the motor cortex at 1.5T and 7T JF - Academic Radiology N2 - Rationale and Objectives The increasing spread of high-field and ultra-high-field magnetic resonance imaging (MRI) scanners has encouraged new discussion of the safety aspects of MRI. Few studies have been published on possible cognitive effects of MRI examinations. The aim of this study was to examine whether changes are measurable after MRI examinations at 1.5 and 7 T by means of transcranial magnetic stimulation (TMS). Materials and Methods TMS was performed in 12 healthy, right-handed male volunteers. First the individual motor threshold was specified, and then the cortical silent period (SP) was measured. Subsequently, the volunteers were exposed to the 1.5-T MRI scanner for 63 minutes using standard sequences. The MRI examination was immediately followed by another TMS session. Fifteen minutes later, TMS was repeated. Four weeks later, the complete setting was repeated using a 7-T scanner. Control conditions included lying in the 1.5-T scanner for 63 minutes without scanning and lying in a separate room for 63 minutes. TMS was performed in the same way in each case. For statistical analysis, Wilcoxon's rank test was performed. Results Immediately after MRI exposure, the SP was highly significantly prolonged in all 12 subjects at 1.5 and 7 T. The motor threshold was significantly increased. Fifteen minutes after the examination, the measured value tended toward normal again. Control conditions revealed no significant differences. Conclusion MRI examinations lead to a transient and highly significant alteration in cortical excitability. This effect does not seem to depend on the strength of the static magnetic field. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.acra.2009.10.004 SN - 1076-6332 VL - 17 IS - 3 SP - 277 EP - 281 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Umutlu, Lale A1 - Kraff, Oliver A1 - Fischer, Anja A1 - Kinner, Sonja A1 - Maderwald, Stefan A1 - Nassenstein, Kai A1 - Nensa, Felix A1 - Grüneisen, Johannes A1 - Orzada, Stephan A1 - Bitz, Andreas A1 - Forsting, Michael A1 - Ladd, Mark E. A1 - Lauenstein, Thomas C. T1 - Seven-Tesla MRI of the female pelvis JF - European Radiology Y1 - 2013 U6 - http://dx.doi.org/10.1007/s00330-013-2868-0 SN - 1432-1084 VL - 23 IS - 9 SP - 2364 EP - 2373 PB - Springer CY - Berlin ER - TY - JOUR A1 - Schlamann, Marc A1 - Voigt, Melanie A. A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Kraff, Oliver A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Forsting, Michael A1 - Wilhelm, Hans T1 - Exposure to high-field MRI does not affect cognitive function JF - Journal of Magnetic Resonance Imaging N2 - Purpose To assess potential cognitive deficits under the influence of static magnetic fields at various field strengths some studies already exist. These studies were not focused on attention as the most vulnerable cognitive function. Additionally, mostly no magnetic resonance imaging (MRI) sequences were performed. Materials and Methods In all, 25 right-handed men were enrolled in this study. All subjects underwent one MRI examination of 63 minutes at 1.5 T and one at 7 T within an interval of 10 to 30 days. The order of the examinations was randomized. Subjects were referred to six standardized neuropsychological tests strictly focused on attention immediately before and after each MRI examination. Differences in neuropsychological variables between the timepoints before and after each MRI examination were assessed and P-values were calculated Results Only six subtests revealed significant differences between pre- and post-MRI. In these tests the subjects achieved better results in post-MRI testing than in pre-MRI testing (P = 0.013–0.032). The other tests revealed no significant results. Conclusion The improvement in post-MRI testing is only explicable as a result of learning effects. MRI examinations, even in ultrahigh-field scanners, do not seem to have any persisting influence on the attention networks of human cognition immediately after exposure. Y1 - 2010 U6 - http://dx.doi.org/10.1002/jmri.22065 SN - 1522-2586 VL - 31 IS - 5 SP - 1061 EP - 1066 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Umutlu, Lale A1 - Bitz, Andreas A1 - Maderwald, Stefan A1 - Orzada, Stephan A1 - Kinner, Sonja A1 - Kraff, Oliver A1 - Brote, Irina A1 - Ladd, Susanne C. A1 - Schroeder, Tobias A1 - Forsting, Michael T1 - Contrast-enhanced ultra-high-field liver MRI: a feasibility trial JF - European Journal of Radiology Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.ejrad.2011.07.004 SN - 0720-048X VL - 82 IS - 5 SP - 760 EP - 767 PB - Elsevier CY - Amsterdam ER -