TY - JOUR A1 - Hoehr, Cornelia A1 - Paulßen, Elisabeth A1 - Benard, Francois A1 - Lee, Chris Jaeil A1 - Hou, Xinchi A1 - Badesso, Brian A1 - Ferguson, Simon A1 - Miao, Qing A1 - Yang, Hua A1 - Buckley, Ken A1 - Hanemaayer, Victoire A1 - Zeisler, Stefan A1 - Ruth, Thomas A1 - Celler, Anna A1 - Schaffer, Paul T1 - ⁴⁴ᶢSc production using a water target on a 13 MeV cyclotron JF - Nuclear medicine and biology N2 - Access to promising radiometals as isotopes for novel molecular imaging agents requires that they are routinely available and inexpensive to obtain. Proximity to a cyclotron center outfitted with solid target hardware, or to an isotope generator for the metal of interest is necessary, both of which can introduce significant hurdles in development of less common isotopes. Herein, we describe the production of ⁴⁴Sc (t₁⸝₂ = 3.97 h, Eavg,β⁺ = 1.47 MeV, branching ratio = 94.27%) in a solution target and an automated loading system which allows a quick turn-around between different radiometallic isotopes and therefore greatly improves their availability for tracer development. Experimental yields are compared to theoretical calculations. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.nucmedbio.2013.12.016 SN - 1872-9614 VL - 41 IS - 5 SP - 401 EP - 406 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Paulßen, Elisabeth A1 - Hoehr, Cornelia A1 - Hou, Xinchi A1 - Hanemaayer, Victoire A1 - Zeisler, Stefan A1 - Adam, Michael J. A1 - Ruth, Thomas J. A1 - Celler, Anna A1 - Buckley, Ken A1 - Benard, Francois A1 - Schaffer, Paul T1 - Production of Y-86 and other radiometals for research purposes using a solution target system JF - Nuclear medicine and biology Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.nucmedbio.2015.06.005 SN - 1872-9614 VL - 42 IS - 11 SP - 842 EP - 849 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Infantino, Angelo A1 - Paulßen, Elisabeth A1 - Mostacci, Domiziano A1 - Schaffer, Paul A1 - Trinczek, Michael A1 - Hoehr, Cornelia T1 - Assessment of the production of medical isotopes using the Monte Carlo code FLUKA: Simulations against experimental measurements JF - Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms N2 - The Monte Carlo code FLUKA is used to simulate the production of a number of positron emitting radionuclides, ¹⁸F, ¹³N, ⁹⁴Tc, ⁴⁴Sc, ⁶⁸Ga, ⁸⁶Y, ⁸⁹Zr, ⁵²Mn, ⁶¹Cu and ⁵⁵Co, on a small medical cyclotron with a proton beam energy of 13 MeV. Experimental data collected at the TR13 cyclotron at TRIUMF agree within a factor of 0.6 ± 0.4 with the directly simulated data, except for the production of ⁵⁵Co, where the simulation underestimates the experiment by a factor of 3.4 ± 0.4. The experimental data also agree within a factor of 0.8 ± 0.6 with the convolution of simulated proton fluence and cross sections from literature. Overall, this confirms the applicability of FLUKA to simulate radionuclide production at 13 MeV proton beam energy. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.nimb.2015.10.067 SN - 1872-9584 VL - 366 SP - 117 EP - 123 PB - Elsevier CY - Amsterdam ER -