TY - JOUR A1 - Heinke, Lars N. A1 - Knicker, Axel J. A1 - Albracht, Kirsten T1 - Increased shoulder muscle stretch reflex elicitability in supine subject posture JF - Isokinetics and Exercise Science N2 - BACKGROUND: Muscle stretch reflexes are widely used to examine neural muscle function. The knowledge of reflex response in muscles crossing the shoulder is limited. OBJECTIVE: To quantify reflex modulation according to various subject postures and different procedures of muscle pre-activation steering. METHODS: Thirteen healthy male participants performed two sets of external shoulder rotation stretches in various positions and with different procedures of muscle pre-activation steering on an isokinetic dynamometer over a range of two different pre-activation levels. All stretches were applied with a dynamometer acceleration of 104∘/s2 and a velocity of 150∘/s. Electromyographical response was measured via sEMG. RESULTS: Consistent reflexive response was observed in all tested muscles in all experimental conditions. The reflex elicitation rate revealed a significant muscle main effect (F (5,288) = 2.358, ρ= 0.040; η2= 0.039; f= 0.637) and a significant test condition main effect (F (1,288) = 5.884, ρ= 0.016; η2= 0.020; f= 0.143). Reflex latency revealed a significant muscle pre-activation level main effect (F (1,274) = 5.008, ρ= 0.026; η2= 0.018; f= 0.469). CONCLUSION: Muscular reflexive response was more consistent in the primary internal rotators of the shoulder. Supine posture in combination with visual feedback of muscle pre-activation level enhanced the reflex elicitation rate. Y1 - 2020 U6 - https://doi.org/10.3233/IES-192219 SN - 1878-5913 VL - 28 IS - 2 SP - 139 EP - 146 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Cosma, Cosmin A1 - Kessler, Julia A1 - Gebhardt, Andreas A1 - Campbell, Ian A1 - Balc, Nicolae T1 - Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed JF - Materials N2 - To manufacture custom medical parts or scaffolds with reduced defects and high mechanical characteristics, new research on optimizing the selective laser melting (SLM) parameters are needed. In this work, a biocompatible powder, 316L stainless steel, is characterized to understand the particle size, distribution, shape and flowability. Examination revealed that the 316L particles are smooth, nearly spherical, their mean diameter is 39.09 μm and just 10% of them hold a diameter less than 21.18 μm. SLM parameters under consideration include laser power up to 200 W, 250–1500 mm/s scanning speed, 80 μm hatch spacing, 35 μm layer thickness and a preheated platform. The effect of these on processability is evaluated. More than 100 samples are SLM-manufactured with different process parameters. The tensile results show that is possible to raise the ultimate tensile strength up to 840 MPa, adapting the SLM parameters for a stable processability, avoiding the technological defects caused by residual stress. Correlating with other recent studies on SLM technology, the tensile strength is 20% improved. To validate the SLM parameters and conditions established, complex bioengineering applications such as dental bridges and macro-porous grafts are SLM-processed, demonstrating the potential to manufacture medical products with increased mechanical resistance made of 316L. Y1 - 2020 U6 - https://doi.org/10.3390/ma13040905 SN - 1996-1944 VL - 13 IS - 4 SP - 1 EP - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Improved Form Factor for Drag Estimation of Fuselages with Various Cross Sections JF - Journal of Aircraft N2 - The paper presents an aerodynamic investigation of 70 different streamlined bodies with fineness ratios ranging from 2 to 10. The bodies are chosen to idealize both unmanned and small manned aircraft fuselages and feature cross-sectional shapes that vary from circular to quadratic. The study focuses on friction and pressure drag in dependency of the individual body’s fineness ratio and cross section. The drag forces are normalized with the respective body’s wetted area to comply with an empirical drag estimation procedure. Although the friction drag coefficient then stays rather constant for all bodies, their pressure drag coefficients decrease with an increase in fineness ratio. Referring the pressure drag coefficient to the bodies’ cross-sectional areas shows a distinct pressure drag minimum at a fineness ratio of about three. The pressure drag of bodies with a quadratic cross section is generally higher than for bodies of revolution. The results are used to derive an improved form factor that can be employed in a classic empirical drag estimation method. The improved formulation takes both the fineness ratio and cross-sectional shape into account. It shows superior accuracy in estimating streamlined body drag when compared with experimental data and other form factor formulations of the literature. Y1 - 2020 U6 - https://doi.org/10.2514/1.C036032 SN - 1533-3868 SP - 1 EP - 13 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Breuß, Michael A1 - Kleefeld, Andreas T1 - Implicit monotone difference methods for scalar conservation laws with source terms JF - Acta Mathematica Vietnamica N2 - In this article, a concept of implicit methods for scalar conservation laws in one or more spatial dimensions allowing also for source terms of various types is presented. This material is a significant extension of previous work of the first author (Breuß SIAM J. Numer. Anal. 43(3), 970–986 2005). Implicit notions are developed that are centered around a monotonicity criterion. We demonstrate a connection between a numerical scheme and a discrete entropy inequality, which is based on a classical approach by Crandall and Majda. Additionally, three implicit methods are investigated using the developed notions. Next, we conduct a convergence proof which is not based on a classical compactness argument. Finally, the theoretical results are confirmed by various numerical tests. KW - Entropy solution KW - Source term KW - Monotone methods KW - Implicit methods KW - Finite difference methods KW - Conservation laws Y1 - 2020 U6 - https://doi.org/10.1007/s40306-019-00354-1 SN - 2315-4144 N1 - Corresponding author: Andreas Kleefeld VL - 45 SP - 709 EP - 738 PB - Springer Singapore CY - Singapore ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Battery Performance on the Initial Sizing of Hybrid-Electric General Aviation Aircraft JF - Journal of Aerospace Engineering N2 - Studies suggest that hybrid-electric aircraft have the potential to generate fewer emissions and be inherently quieter when compared to conventional aircraft. By operating combustion engines together with an electric propulsion system, synergistic benefits can be obtained. However, the performance of hybrid-electric aircraft is still constrained by a battery’s energy density and discharge rate. In this paper, the influence of battery performance on the gross mass for a four-seat general aviation aircraft with a hybrid-electric propulsion system is analyzed. For this design study, a high-level approach is chosen, using an innovative initial sizing methodology to determine the minimum required aircraft mass for a specific set of requirements and constraints. Only the peak-load shaving operational strategy is analyzed. Both parallel- and serial-hybrid propulsion configurations are considered for two different missions. The specific energy of the battery pack is varied from 200 to 1,000 W⋅h/kg, while the discharge time, and thus the normalized discharge rating (C-rating), is varied between 30 min (2C discharge rate) and 2 min (30C discharge rate). With the peak-load shaving operating strategy, it is desirable for hybrid-electric aircraft to use a light, low capacity battery system to boost performance. For this case, the battery’s specific power rating proved to be of much higher importance than for full electric designs, which have high capacity batteries. Discharge ratings of 20C allow a significant take-off mass reduction aircraft. The design point moves to higher wing loadings and higher levels of hybridization if batteries with advanced technology are used. Y1 - 2020 U6 - https://doi.org/10.1061/(ASCE)AS.1943-5525.0001113 SN - 1943-5525 VL - 33 IS - 3 PB - ASCE CY - Reston, Va. ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Human-Centered Gamification Framework for Manufacturing Systems JF - Procedia CIRP N2 - While bringing new opportunities, the Industry 4.0 movement also imposes new challenges to the manufacturing industry and all its stakeholders. In this competitive environment, a skilled and engaged workforce is a key to success. Gamification can generate valuable feedbacks for improving employees’ engagement and performance. Currently, Gamification in workspaces focuses on computer-based assignments and training, while tasks that require manual labor are rarely considered. This research provides an overview of Enterprise Gamification approaches and evaluates the challenges. Based on that, a skill-based Gamification framework for manual tasks is proposed, and a case study in the Industry 4.0 model factory is shown. Y1 - 2020 U6 - https://doi.org/10.1016/j.procir.2020.04.076 SN - 2212-8271 VL - 93 SP - 670 EP - 675 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Drumm, Christian A1 - Emhardt, Selina N. A1 - Kok, Ellen M. A1 - Jarodzka, Halzka A1 - Brand-Gruwel, Saskia A1 - van Gog, Tamara T1 - How Experts Adapt Their Gaze Behavior When Modeling a Task to Novices JF - Cognitive science N2 - Domain experts regularly teach novice students how to perform a task. This often requires them to adjust their behavior to the less knowledgeable audience and, hence, to behave in a more didactic manner. Eye movement modeling examples (EMMEs) are a contemporary educational tool for displaying experts’ (natural or didactic) problem-solving behavior as well as their eye movements to learners. While research on expert-novice communication mainly focused on experts’ changes in explicit, verbal communication behavior, it is as yet unclear whether and how exactly experts adjust their nonverbal behavior. This study first investigated whether and how experts change their eye movements and mouse clicks (that are displayed in EMMEs) when they perform a task naturally versus teach a task didactically. Programming experts and novices initially debugged short computer codes in a natural manner. We first characterized experts’ natural problem-solving behavior by contrasting it with that of novices. Then, we explored the changes in experts’ behavior when being subsequently instructed to model their task solution didactically. Experts became more similar to novices on measures associated with experts’ automatized processes (i.e., shorter fixation durations, fewer transitions between code and output per click on the run button when behaving didactically). This adaptation might make it easier for novices to follow or imitate the expert behavior. In contrast, experts became less similar to novices for measures associated with more strategic behavior (i.e., code reading linearity, clicks on run button) when behaving didactically. Y1 - 2020 U6 - https://doi.org/10.1111/cogs.12893 SN - 1551-6709 VL - 44 IS - 9 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Gaigall, Daniel T1 - Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic on partly not identically distributed data JF - Communications in Statistics - Theory and Methods N2 - The established Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic is investigated for partly not identically distributed data. Surprisingly, it turns out that the statistic has the well-known distribution-free limiting null distribution of the classical criterion under standard regularity conditions. An application is testing goodness-of-fit for the regression function in a non parametric random effects meta-regression model, where the consistency is obtained as well. Simulations investigate size and power of the approach for small and moderate sample sizes. A real data example based on clinical trials illustrates how the test can be used in applications. KW - Brownian Pillow KW - Hoeffding-Blum-Kiefer-Rosenblatt independence test KW - not identically distributed KW - random effects meta-regression model Y1 - 2020 U6 - https://doi.org/10.1080/03610926.2020.1805767 SN - 1532-415X VL - 51 IS - 12 SP - 4006 EP - 4028 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Kerres, Karsten A1 - Gredigk-Hoffmann, Sylvia A1 - Jathe, Rüdiger A1 - Orlik, Stefan A1 - Sariyildiz, Mustafa A1 - Schmidt, Torsten A1 - Sympher, Klaus-Jochen A1 - Uhlenbroch, Adrian T1 - Future approaches for sewer system condition assessment JF - Water Practice & Technology N2 - Different analytical approaches exist to describe the structural substance or wear reserve of sewer systems. The aim is to convert engineering assessments of often complex defect patterns into computational algorithms and determine a substance class for a sewer section or manhole. This analytically determined information is essential for strategic rehabilitation planning processes up to network level, as it corresponds to the most appropriate rehabilitation type and can thus provide decision-making support. Current calculation methods differ clearly from each other in parts, so that substance classes determined by the different approaches are only partially comparable with each other. The objective of the German R&D cooperation project ‘SubKanS’ is to develop a methodology for classifying the specific defect patterns resulting from the interaction of all the individual defects, and their severities and locations. The methodology takes into account the structural substance of sewer sections and manholes, based on real data and theoretical considerations analogous to the condition classification of individual defects. The result is a catalogue of defect patterns and characteristics, as well as associated structural substance classifications of sewer systems (substance classes). The methodology for sewer system substance classification is developed so that the classification of individual defects can be transferred into a substance class of the sewer section or manhole, eventually taking into account further information (e.g. pipe material, nominal diameter, etc.). The result is a validated methodology for automated sewer system substance classification. Y1 - 2020 U6 - https://doi.org/10.2166/wpt.2020.027 SN - 1751-231X IS - 15 (2) SP - 386 EP - 393 PB - IWA Publishing CY - London ER - TY - JOUR A1 - Eggert, Mathias A1 - Alberts, Jens T1 - Frontiers of business intelligence and analytics 3.0: a taxonomy-based literature review and research agenda JF - Business Research N2 - Researching the field of business intelligence and analytics (BI & A) has a long tradition within information systems research. Thereby, in each decade the rapid development of technologies opened new room for investigation. Since the early 1950s, the collection and analysis of structured data were the focus of interest, followed by unstructured data since the early 1990s. The third wave of BI & A comprises unstructured and sensor data of mobile devices. The article at hand aims at drawing a comprehensive overview of the status quo in relevant BI & A research of the current decade, focusing on the third wave of BI & A. By this means, the paper’s contribution is fourfold. First, a systematically developed taxonomy for BI & A 3.0 research, containing seven dimensions and 40 characteristics, is presented. Second, the results of a structured literature review containing 75 full research papers are analyzed by applying the developed taxonomy. The analysis provides an overview on the status quo of BI & A 3.0. Third, the results foster discussions on the predicted and observed developments in BI & A research of the past decade. Fourth, research gaps of the third wave of BI & A research are disclosed and concluded in a research agenda. Y1 - 2020 U6 - https://doi.org/10.1007/s40685-020-00108-y SN - 2198-2627 VL - 2020 IS - 13 SP - 685 EP - 739 PB - Springer CY - Heidelberg ER -