TY - CHAP A1 - Valero, Daniel A1 - Kramer, Matthias A1 - Bung, Daniel Bernhard A1 - Chanson, Hubert T1 - A stochastic bubble generator for air-water flow research T2 - E-proceedings of the 38th IAHR World Congress, September 1-6, 2019, Panama City, Panama Y1 - 2019 U6 - https://doi.org/10.3850/38WC092019-0909 SP - 5714 EP - 5721 ER - TY - CHAP A1 - Eltester, Niklas Sebastian A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - A smart factory setup based on the RoboCup logistics league T2 - 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS) N2 - In this paper we present SMART-FACTORY, a setup for a research and teaching facility in industrial robotics that is based on the RoboCup Logistics League. It is driven by the need for developing and applying solutions for digital production. Digitization receives constantly increasing attention in many areas, especially in industry. The common theme is to make things smart by using intelligent computer technology. Especially in the last decade there have been many attempts to improve existing processes in factories, for example, in production logistics, also with deploying cyber-physical systems. An initiative that explores challenges and opportunities for robots in such a setting is the RoboCup Logistics League. Since its foundation in 2012 it is an international effort for research and education in an intra-warehouse logistics scenario. During seven years of competition a lot of knowledge and experience regarding autonomous robots was gained. This knowledge and experience shall provide the basis for further research in challenges of future production. The focus of our SMART-FACTORY is to create a stimulating environment for research on logistics robotics, for teaching activities in computer science and electrical engineering programmes as well as for industrial users to study and explore the feasibility of future technologies. Building on a very successful history in the RoboCup Logistics League we aim to provide stakeholders with a dedicated facility oriented at their individual needs. Y1 - 2020 U6 - https://doi.org/10.1109/ICPS48405.2020.9274766 N1 - 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), 10-12 June 2020, Tampere, Finland. SP - 297 EP - 302 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Pham, Phu Tinh A1 - Staat, Manfred T1 - A simplification for shakedown analysis of hardening structures T2 - Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon Y1 - 2015 SP - 1 EP - 4 PB - RWTH Aachen University CY - Aachen ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abouzar, Maryam H. A1 - Wagner, Torsten A1 - Näther, Niko A1 - Rolka, David A1 - Yoshinobu, Tatsuo A1 - Kloock, Joachim P. A1 - Turek, Monika A1 - Ingebrandt, Sven A1 - Poghossian, Arshak T1 - A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices T2 - MRS Proceedings Y1 - 2006 U6 - https://doi.org/10.1557/PROC-0952-F08-02 N1 - Vol. 952 - Symposium F - Integrated Nanosensors SP - 1 EP - 9 ER - TY - CHAP A1 - Reke, Michael A1 - Peter, Daniel A1 - Schulte-Tigges, Joschua A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Walter, Thomas A1 - Matheis, Dominik T1 - A Self-Driving Car Architecture in ROS2 T2 - 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa N2 - In this paper we report on an architecture for a self-driving car that is based on ROS2. Self-driving cars have to take decisions based on their sensory input in real-time, providing high reliability with a strong demand in functional safety. In principle, self-driving cars are robots. However, typical robot software, in general, and the previous version of the Robot Operating System (ROS), in particular, does not always meet these requirements. With the successor ROS2 the situation has changed and it might be considered as a solution for automated and autonomous driving. Existing robotic software based on ROS was not ready for safety critical applications like self-driving cars. We propose an architecture for using ROS2 for a self-driving car that enables safe and reliable real-time behaviour, but keeping the advantages of ROS such as a distributed architecture and standardised message types. First experiments with an automated real passenger car at lower and higher speed-levels show that our approach seems feasible for autonomous driving under the necessary real-time conditions. Y1 - 2020 SN - 978-1-7281-4162-6 U6 - https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 N1 - 2020 International SAUPEC/RobMech/PRASA Conference, 29-31 Jan. 2020, Cape Town, South Africa SP - 1 EP - 6 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Mistler, Michael A1 - Butenweg, Christoph T1 - A seismic design procedure for masonry buildings T2 - Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping Y1 - 2005 SN - 1-905088-00-0 U6 - https://doi.org/10.4203/ccp.81.193 SP - 465 EP - 467 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Neumann, Tobias A1 - Dülberg, Enno A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - A rotating platform for swift acquisition of dense 3D point clouds T2 - Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I Y1 - 2016 SN - 978-3-319-43505-3 (Print) SN - 978-3-319-43506-0 (Online) U6 - https://doi.org/10.1007/978-3-319-43506-0_22 N1 - Series: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) VL - 9834 SP - 257 EP - 268 PB - Springer ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Marino, Matthew A1 - Bil, Cees A1 - Havermann, Marc A1 - Braun, Carsten T1 - A review of guidelines and best practices for subsonic aerodynamic simulations using RANS CFD T2 - Asia-Pacific International Symposium on Aerospace Technology (APISAT), At Gold Coast, Australia, 04. - 06. Dezember 2019 Y1 - 2019 SN - 978-1-925627-40-4 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft T2 - Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea Y1 - 2017 ER - TY - CHAP A1 - Philipp, Brauner A1 - Brillowski, Florian Sascha A1 - Dammers, Hannah A1 - Königs, Peter A1 - Kordtomeikel, Frauke Carole A1 - Petruck, Henning A1 - Schaar, Anne Kathrin A1 - Schmitz, Seth A1 - Steuer-Dankert, Linda A1 - Mertens, Alexander A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Nitsch, Verena A1 - Schuh, Günther A1 - Ziefle, Martina ED - Mrugalska, Beata ED - Trzcielinski, Stefan ED - Karwowski, Waldemar ED - Nicolantonio, Massimo Di ED - Roossi, Emilio T1 - A research framework for human aspects in the internet of production: an intra-company perspective T2 - Proceedings of the AHFE 2020 N2 - Digitalization in the production sector aims at transferring concepts and methods from the Internet of Things (IoT) to the industry and is, as a result, currently reshaping the production area. Besides technological progress, changes in work processes and organization are relevant for a successful implementation of the “Internet of Production” (IoP). Focusing on the labor organization and organizational procedures emphasizes to consider intra-company factors such as (user) acceptance, ethical issues, and ergonomics in the context of IoP approaches. In the scope of this paper, a research approach is presented that considers these aspects from an intra-company perspective by conducting studies on the shop floor, control level and management level of companies in the production area. Focused on four central dimensions—governance, organization, capabilities, and interfaces—this contribution presents a research framework that is focused on a systematic integration and consideration of human aspects in the realization of the IoP. KW - Human factors KW - Digitalization KW - Acceptance KW - Ethics KW - Human-robot collaboration Y1 - 2020 SN - 978-3-030-51980-3 U6 - https://doi.org/10.1007/978-3-030-51981-0_1 N1 - AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing, Advanced Production Management and Process Control, and Additive Manufacturing, Modeling Systems and 3D Prototyping, July 16–20, 2020, USA SP - 3 EP - 17 PB - Springer CY - Cham ER -