TY - CHAP A1 - Ferrein, Alexander A1 - Schiffer, Stefan A1 - Kallweit, Stephan T1 - The ROSIN Education Concept - Fostering ROS Industrial-Related Robotics Education in Europe T2 - ROBOT 2017: Third Iberian Robotics Conference Y1 - 2018 SN - 978-3-319-70836-2 U6 - https://doi.org/10.1007/978-3-319-70836-2_31 N1 - Advances in Intelligent Systems and Computing, vol 694; (AISC, volume 694) SP - 370 EP - 381 PB - Springer CY - Cham ER - TY - CHAP A1 - Bosse, Elke A1 - De Clercq, Mikael A1 - Barnat, Miriam T1 - The Role of Diversity for the Transition to Higher Education T2 - EARLI SIG 4, Giessen Y1 - 2018 ER - TY - CHAP A1 - Anic, Filip A1 - Penava, Davorin A1 - Guljas, Ivica A1 - Sarhosis, Vasilis A1 - Abrahamczyk, Lars A1 - Butenweg, Christoph T1 - The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10168 SP - 1 EP - 11 ER - TY - CHAP A1 - Leise, Philipp A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Technical Operations Research (TOR) - Algorithms, not Engineers, Design Optimal Energy Efficient and Resilient Cooling Systems T2 - FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems N2 - The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example. Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP. Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs. Y1 - 2018 N1 - International Conference on Fan Noise, Aerodynamics, Applications and Systems 18-20.04.2018 Darmstadt, Deutschland SP - 1 EP - 12 ER - TY - CHAP A1 - Rütters, René A1 - Weinheimer, Marius A1 - Bragard, Michael T1 - Teaching Control Theory with a Simplified Helicopter Model and a Classroom Fitting Hardware Test-Bench T2 - 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) Y1 - 2018 SN - 978-1-5386-6903-7 U6 - https://doi.org/10.1109/RTUCON.2018.8659871 ER - TY - CHAP A1 - Jenert, Tobias A1 - Barnat, Miriam A1 - Dilger, Bernadette T1 - Struktur, Prozess oder Didaktik als Ausgangspunkt? - Ein integratives Modell der Curriculumentwicklung an Hochschule T2 - Gelingende Lehre: erkennen, entwickeln, etablieren : Beiträge der Jahrestagung der Deutschen Gesellschaft für Hochschuldidaktik (dghd) 2016 Y1 - 2018 SN - 9783763959419 N1 - Blickpunkt Hochschuldidaktik, Vol. 132 SP - 149 EP - 164 PB - wbv Media CY - Bielefeld ER - TY - CHAP A1 - Thurn, Laura A1 - Gebhardt, Andreas T1 - Strategy of Education on Materials for Students T2 - Conference Proceedings: „New Perspectives in Science Education" Y1 - 2018 SN - 978-88-6292-976-9 SP - 156 EP - 161 CY - Florence, Italy ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Borchers, Kai A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Lange, Caroline A1 - Maiwald, Volker A1 - Mikulz, Eugen A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Sasaki, Kaname A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Toth, Norbert A1 - Wejmo, Elisabet A1 - Biele, Jens A1 - Krause, Christian A1 - Cerotti, Matteo A1 - Peloni, Alessandro A1 - Dachwald, Bernd T1 - Small Spacecraft Solar Sailing for Small Solar System Body Multiple Rendezvous and Landing T2 - 2018 IEEE Aerospace Conference : 3-10 March 2018 Y1 - 2018 SN - 978-1-5386-2014-4 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Herčík, David A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D A1 - Koncz, Alexander A1 - Krause, Christian A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Maiwald, Volker A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tardivel, Simon A1 - Tóth, Norbert A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and ‘Now-Term ‘technologies T2 - 69 th International Astronautical Congress (IAC) N2 - Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, ”If you’ve seen one asteroid, you’ve seen one asteroid”, meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups‘ studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population. KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - small spacecraft Y1 - 2018 N1 - 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. https://www.bho-legal.com/1-5-october-2018-69th-international-astronautical-congress-2018-in-bremen-germany/ SP - 1 EP - 18 ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten T1 - Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems T2 - Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen Y1 - 2018 ER -