TY - JOUR A1 - Fiedler, Thomas M. A1 - Orzada, Stephan A1 - Flöser, Martina A1 - Rietsch, Stefan H. G. A1 - Schmidt, Simon A1 - Stelter, Jonathan K. A1 - Wittrich, Marco A1 - Quick, Harald H. A1 - Bitz, Andreas A1 - Ladd, Mark E. T1 - Performance and safety assessment of an integrated transmitarray for body imaging at 7 T under consideration of specificabsorption rate, tissue temperature, and thermal dose JF - NMR in Biomedicine N2 - In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil. KW - body imaging at 7 T MRI KW - thermal dose KW - tissue temperature KW - transmit antenna arrays Y1 - 2022 U6 - http://dx.doi.org/10.1002/nbm.4656 SN - 0952-3480 (Print) SN - 1099-1492 (Online) VL - 35 IS - 5 SP - 1 EP - 17 PB - Wiley ER - TY - JOUR A1 - Orzada, Stephan A1 - Bitz, Andreas A1 - Schäfer, Lena C. A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Maderwald, Stefan T1 - Open design eight-channel transmit/receive coil for high-resolution and real-time ankle imaging at 7 T JF - Medical Physics N2 - Purpose: At 1.5 T, real-time MRI of joint movement has been shown to be feasible. However, 7 T, provides higher SNR and thus an improved potential for parallel imaging acceleration. The purpose of this work was to build an open, U-shaped eight-channel transmit/receive microstrip coil for 7 T MRI to enable high-resolution and real-time imaging of the moving ankle joint. Methods: A U-shaped eight-channel transmit/receive array for the human ankle was built.urn:x-wiley:00942405:mp3399:equation:mp3399-math-0001-parameters and urn:x-wiley:00942405:mp3399:equation:mp3399-math-0002-factor were measured. SAR calculations of different ankle postures were performed to ensure patient safety. Inhomogeneities in the transmit field consequent to the open design were compensated for by the use of static RF shimming. High-resolution and real-time imaging was performed in human volunteers. Results: The presented array showed good performance with regard to patient comfort and image quality. High acceleration factors of up to 4 are feasible without visible acceleration artifacts. Reasonable image homogeneity was achieved with RF shimming. Conclusions: Open, noncylindrical designs for transmit/receive coils are practical at 7 T and real-time imaging of the moving joint is feasible with the presented coil design. Y1 - 2011 U6 - http://dx.doi.org/10.1118/1.3553399 SN - 2473-4209 VL - 38 IS - 3 SP - 1162 EP - 1167 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kraff, Oliver A1 - Wrede, Karsten H. A1 - Schoemberg, Tobias A1 - Dammann, Philipp A1 - Noureddine, Yacine A1 - Orzada, Stephan A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - MR safety assessment of potential RF heating from cranial fixation plates at 7 T JF - Medical Physics Y1 - 2013 U6 - http://dx.doi.org/10.1118/1.4795347 SN - 2473-4209 VL - 40 IS - 4 SP - 042302-1 EP - 042302-10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Orzada, Stephan A1 - Johst, Sören A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Solbach, Klaus A1 - Ladd, Mark E. T1 - Mitigation of B1(+) inhomogeneity on single-channel transmit systems with TIAMO JF - Magnetic Resonance in Medicine Y1 - 2013 U6 - http://dx.doi.org/10.1002/mrm.24453 SN - 1522-2594 VL - 70 IS - 1 SP - 290 EP - 294 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Orzada, Stephan A1 - Fiedler, Thomas M. A1 - Bitz, Andreas A1 - Ladd, Mark E. A1 - Quick, Harald H. T1 - Local SAR compression with overestimation control to reduce maximum relative SAR overestimation and improve multi-channel RF array performance JF - Magnetic Resonance Materials in Physics, Biology and Medicine N2 - Objective In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance. Method Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression. Result Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20% at the cost of a higher absolute overestimation at high actual local SAR values. Conclusion The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission. Y1 - 2020 SN - 1352-8661 U6 - http://dx.doi.org/10.1007/s10334-020-00890-0 IS - 34 (2021) SP - 153 EP - 164 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Noureddine, Yacine A1 - Kraff, Oliver A1 - Ladd, Mark E. A1 - Wrede, Karsten H. A1 - Chen, Bixia A1 - Quick, Harald H. A1 - Schaefers, Gregor A1 - Bitz, Andreas T1 - In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla JF - Magnetic Resonance in Medicine Y1 - 2017 U6 - http://dx.doi.org/10.1002/mrm.26650 SN - 1522-2594 IS - Early view PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Maas, Marnix C. A1 - Vos, Eline K. A1 - Lagemaat, Miriam W. A1 - Bitz, Andreas A1 - Orzada, Stephan A1 - Kobus, Thiele A1 - Kraff, Oliver A1 - Maderwald, Stefan A1 - Ladd, Mark E. A1 - Scheenen, Tom W. J. T1 - Feasibility of T₂-weighted turbo spin echo imaging of the human prostate at 7 tesla JF - Magnetic Resonance in Medicine N2 - Purpose To demonstrate that high quality T₂-weighted (T2w) turbo spin-echo (TSE) imaging of the complete prostate can be achieved routinely and within safety limits at 7 T, using an external transceive body array coil only. Methods Nine healthy volunteers and 12 prostate cancer patients were scanned on a 7 T whole-body system. Preparation consisted of B₀ and radiofrequency shimming and localized flip angle calibration. T₁ and T₂ relaxation times were measured and used to define the T2w-TSE protocol. T2w imaging was performed using a TSE sequence (pulse repetition time/echo time 3000–3640/71 ms) with prolonged excitation and refocusing pulses to reduce specific absorption rate. Results High quality T2w TSE imaging was performed in less than 2 min in all subjects. Tumors of patients with gold-standard tumor localization (MR-guided biopsy or prostatectomy) were well visualized on 7 T imaging (n = 3). The number of consecutive slices achievable within a 10-g averaged specific absorption rate limit of 10 W/kg was ≥28 in all subjects, sufficient for full prostate coverage with 3-mm slices in at least one direction. Conclusion High quality T2w TSE prostate imaging can be performed routinely and within specific absorption rate limits at 7 T with an external transceive body array. Y1 - 2014 U6 - http://dx.doi.org/10.1002/mrm.24818 SN - 1522-2594 VL - 71 IS - 5 SP - 1711 EP - 1719 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schlamann, Marc A1 - Voigt, Melanie A. A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Kraff, Oliver A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Forsting, Michael A1 - Wilhelm, Hans T1 - Exposure to high-field MRI does not affect cognitive function JF - Journal of Magnetic Resonance Imaging N2 - Purpose To assess potential cognitive deficits under the influence of static magnetic fields at various field strengths some studies already exist. These studies were not focused on attention as the most vulnerable cognitive function. Additionally, mostly no magnetic resonance imaging (MRI) sequences were performed. Materials and Methods In all, 25 right-handed men were enrolled in this study. All subjects underwent one MRI examination of 63 minutes at 1.5 T and one at 7 T within an interval of 10 to 30 days. The order of the examinations was randomized. Subjects were referred to six standardized neuropsychological tests strictly focused on attention immediately before and after each MRI examination. Differences in neuropsychological variables between the timepoints before and after each MRI examination were assessed and P-values were calculated Results Only six subtests revealed significant differences between pre- and post-MRI. In these tests the subjects achieved better results in post-MRI testing than in pre-MRI testing (P = 0.013–0.032). The other tests revealed no significant results. Conclusion The improvement in post-MRI testing is only explicable as a result of learning effects. MRI examinations, even in ultrahigh-field scanners, do not seem to have any persisting influence on the attention networks of human cognition immediately after exposure. Y1 - 2010 U6 - http://dx.doi.org/10.1002/jmri.22065 SN - 1522-2586 VL - 31 IS - 5 SP - 1061 EP - 1066 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Noureddine, Yacine A1 - Bitz, Andreas A1 - Ladd, Mark E. A1 - Thürling, Markus A1 - Ladd, Susanne C. A1 - Schaefers, Gregor A1 - Kraff, Oliver T1 - Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study JF - Magnetic Resonance Materials in Physics, Biology and Medicine Y1 - 2015 U6 - http://dx.doi.org/10.1007/s10334-015-0499-y SN - 1352-8661 VL - 28 IS - 6 SP - 577 EP - 590 PB - Springer CY - Berlin ER - TY - JOUR A1 - Rietsch, Stefan H. G. A1 - Brunheim, Sascha A1 - Orzada, Stephan A1 - Voelker, Maximilian N. A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Gratz, Marcel A1 - Ladd, Mark E. A1 - Quick, Harald H. T1 - Development and evaluation of a 16-channel receive-only RF coil to improve 7T ultra-high field body MRI with focus on the spine JF - Magnetic Resonance in Medicine Y1 - 2019 U6 - http://dx.doi.org/10.1002/mrm.27731 SN - 1522-2594 IS - Early view PB - Wiley CY - Weinheim ER -