TY - JOUR A1 - Reisert, Steffen A1 - Henkel, Hartmut A1 - Schneider, Andreas A1 - Schäfer, Daniel A1 - Friedrich, Peter A1 - Berger, Jörg A1 - Schöning, Michael Josef T1 - Development of a handheld sensor system for the online measurement of hydrogen peroxide in aseptic filling systems JF - Physica Status Solidi (A). 207 (2010), H. 4 Y1 - 2010 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 SP - 913 EP - 918 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Wang, C. A1 - Otto, R. A1 - Yoshinobu, T. T1 - Development of a handheld 16 channel pen-type LAPS for electrochemical sensing JF - Sensors and Actuators B. 108 (2005) Y1 - 2005 SN - 0925-4005 SP - 808 EP - 814 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Wang, C. A1 - Otto, R. A1 - Yoshinobu, T. T1 - Development of a handheld 16 channel pen-type LAPS for electrochemical sensing JF - Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors Y1 - 2004 N1 - Chemical sensors ; 20.2004 Suppl. B. IMCS ; (10, 2004, Tsukuba) ; International Meeting on Chemical Sensors ; (10 : ; 2004.07.11-14 : ; Tsukuba) SP - 136 EP - 137 PB - Japan Association of Chemical Sensors CY - Fukuoka ER - TY - JOUR A1 - Iken, Heiko A1 - Bronder, Thomas A1 - Goretzki, Alexander A1 - Kriesel, Jana A1 - Ahlborn, Kristina A1 - Gerlach, Frank A1 - Vonau, Winfried A1 - Zander, Willi A1 - Schubert, Jürgen A1 - Schöning, Michael Josef T1 - Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor JF - physica status solidi a : applications and materials sciences Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900114 SN - 1862-6319 VL - 216 IS - 12 SP - 1 EP - 8 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Keusgen, M. A1 - Jünger, M. A1 - Krest, I. A1 - Schöning, Michael Josef T1 - Development of a biosensor specific for cysteine sulfoxides JF - Biosensors & Bioelectronics. 18 (2003), H. 5-6 Y1 - 2003 SN - 0956-5663 SP - 805 EP - 812 ER - TY - JOUR A1 - Turek, Monika A1 - Ketterer, Lothar A1 - Claßen, Melanie A1 - Berndt, Heinz A1 - Elbers, Gereon A1 - Krüger, Peter A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development and Electrochemical Investigations of an EIS-(Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection JF - Sensors Y1 - 2007 SN - 1424-8220 VL - 7 IS - 8 SP - 1415 EP - 1426 ER - TY - JOUR A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Gonzalez, Laura Osorio A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development and characterization of a field-effect biosensor for the detection of acetoin JF - Biosensors and Bioelectronics N2 - A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2018.05.023 VL - 115 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, Ko-Ichiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging JF - Sensors and Actuators B: Chemical N2 - Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach to read out light-addressable potentiometric sensors (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device, which allows fast and flexible generation of light patterns. With the help of these light patterns, the sensor surface of the LAPS device can be addressed. The DLP approach has several advantages compared to conventional LAPS set-ups, e.g., the spot size and the shape of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of the measurement. In addition, the modulation frequency and intensity of the light beam are important parameters of the LAPS set-up. Within this work, the authors will discuss two different ways of light modulation by the DLP set-up, investigate the influence of different modulation frequencies and different light intensities as well as demonstrate the scanning capabilities of the new set-up by pH mapping on the sensor surface. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2010.12.003 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 34 EP - 39 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sousa, Marcos A. M. A1 - Siqueira, Jose R. Jr. A1 - Vercik, Andres A1 - Schöning, Michael Josef A1 - Oliveira, Osvaldo N. Jr. T1 - Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors JF - IEEE Sensors Journal N2 - The capacitive electrolyte–insulator–semiconductor (EIS) structure is a typical device based on a field-effect sensor platform. With a simple silicon-based structure, EIS have been useful for several sensing applications, especially with incorporation of nanostructured films to modulate the ionic transport and the flat-band potential. In this paper, we report on ion transport and changes in flat-band potential in EIS sensors made with layer-by-layer films containing poly(amidoamine) (PAMAM) dendrimer and single-walled carbon nanotubes (SWNTs) adsorbed on p-Si/SiO 2 /Ta 2 O 5 chips with an Al ohmic contact. The impedance spectra were fitted using an equivalent circuit model, from which we could determine parameters such as the double-layer capacitance. This capacitance decreased with the number of bilayers owing to space charge accumulated at the electrolyte–insulator interface, up to three PAMAM/SWNTs bilayers, after which it stabilized. The charge-transfer resistance was also minimum for three bilayers, thus indicating that this is the ideal architecture for an optimized EIS performance. The understanding of the influence of nanostructures and the fine control of operation parameters pave the way for optimizing the design and performance of new EIS sensors. Y1 - 2017 U6 - http://dx.doi.org/10.1109/JSEN.2017.2653238 SN - 1558-1748 VL - 17 IS - 6 SP - 1735 EP - 1740 PB - IEEE CY - New York ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Patrick A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system JF - Physica status solidi (a) N2 - On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable “down times” during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements. Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201533043 SN - 1862-6300 VL - 213 IS - 6 SP - 1479 EP - 1485 PB - Wiley-VCH CY - Weinheim ER -