TY - CHAP A1 - Koplin, Tobias J. A1 - Siemons, Maike A1 - Océn-Valéntin, César A1 - Sanders, Daniel A1 - Simon, Ulrich T1 - Workflow for high throughput screening of gas sensing materials N2 - The workflow of a high throughput screening setup for the rapid identification of new and improved sensor materials is presented. The polyol method was applied to prepare nanoparticular metal oxides as base materials, which were functionalised by surface doping. Using multi-electrode substrates and high throughput impedance spectroscopy (HT-IS) a wide range of materials could be screened in a short time. Applying HT-IS in search of new selective gas sensing materials a NO2-tolerant NO sensing material with reduced sensitivities towards other test gases was identified based on iridium doped zinc oxide. Analogous behaviour was observed for iridium doped indium oxide. KW - Biosensor KW - High throughput experimentation KW - gas sensor KW - metal oxide KW - doping KW - impedance spectroscopy KW - nitrogen oxides Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1407 ER - TY - CHAP A1 - Pijanowska, Dorota G. A1 - Remiszewska, Elzbieta A1 - Pederzolli, Cecilia A1 - Lunelli, Lorenzo A1 - Vendano, Michele A1 - Canteri, Roberto A1 - Dudzinski, Konrad A1 - Kruk, Jerzy A1 - Torbicz, Wladyslaw T1 - Surface modification for microreactor fabrication N2 - In this paper, methods of surface modification of different supports, i.e. glass and polymeric beads for enzyme immobilisation are described. The developed method of enzyme immobilisation is based on Schiff’s base formation between the amino groups on the enzyme surface and the aldehyde groups on the chemically modified surface of the supports. The surface of silicon modified by APTS and GOPS with immobilised enzyme was characterised by atomic force microscopy (AFM), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and infrared spectroscopy (FTIR). The supports with immobilised enzyme (urease) were also tested in combination with microreactors fabricated in silicon and Perspex, operating in a flow-through system. For microreactors filled with urease immobilised on glass beads (Sigma) and on polymeric beads (PAN), a very high and stable signal (pH change) was obtained. The developed method of urease immobilisation can be stated to be very effective. KW - Biosensor KW - Microreactors KW - surface modification KW - enzyme immobilisation KW - lab-on-a-chip Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1480 ER - TY - CHAP A1 - Srivastava, Alok A1 - Singh, Virendra A1 - Dhand, Chetna A1 - Kaur, Manindar A1 - Singh, Tejvir A1 - Witte, Katrin A1 - Scherer, Ulrich W. T1 - Study of swift heavy ion modified conduction polymer composites for application as gas sensor N2 - A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas. KW - Biosensor KW - Conducing polymer KW - ammonia gas sensors KW - swift heavy ions KW - polymer composites Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1345 ER - TY - CHAP A1 - Barek, Jiri A1 - Fischer, Jan A1 - Navratil, Tomas A1 - Peckova, Karolina A1 - Yosypchuk, Bogdan T1 - Silver solid amalgam electrodes as sensors for chemical carcinogens N2 - The applicability of differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) at a non-toxic meniscus-modified silver solid amalgam electrode (m-AgSAE) for the determination of trace amounts of genotoxic substances was demonstrated on the determination of micromolar and submicromolar concentrations of 3-nitrofluoranthene using methanol - 0.01 mol L-1 NaOH (9:1) mixture as a base electrolyte and of Ostazine Orange using 0.01 mol L-1 NaOH as a base electrolyte. KW - Biosensor KW - Solid amalgam electrodes KW - voltammetry KW - carcinogens KW - 3-nitrofluoranthene KW - Ostazine Orange Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1554 ER - TY - CHAP A1 - Sakthivel, Mariappan A1 - Weppner, Werner T1 - Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method N2 - A solid-state amperometric hydrogen sensor based on a protonated Nafion membrane and catalytic active electrode operating at room temperature was fabricated and tested. Ionic conducting polymer-metal electrode interfaces were prepared chemically by using the impregnation-reduction method. The polymer membrane was impregnated with tetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced by using either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensing characteristics with air as reference gas is reported. The sensors were capable of detecting hydrogen concentrations from 10 ppm to 10% in nitrogen. The response time was in the range of 10-30 s and a stable linear current output was observed. The thin Pt films were characterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy and EDAX. KW - Biosensor KW - Hydrogen sensor KW - amperometric sensor KW - porous Pt electrode KW - chemical reduction method Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1399 ER - TY - CHAP A1 - Mirmohseni, Abdolreza A1 - Rostamizadeh, Kobra T1 - Quartz crystal nanobalance in conjunction with principal component analysis for identification of volatile organic compounds N2 - Quartz crystal nanobalance (QCN) sensors are considered as powerful masssensitive sensors to determine materials in the sub-nanogram level. In this study, a single piezoelectric quartz crystal nanobalance modified with polystyrene was employed to detect benzene, toluene, ethylbenzene and xylene (BTEX compounds). The frequency shift of the QCN sensor was found to be linear against the BTEX compound concentrations in the range about 1-45 mg l-1. The correlation coefficients for benzene, toluene, ethylbenzene, and xylene were 0.991, 0.9977, 0.9946 and 0.9971, respectively. The principal component analysis was also utilized to process the frequency response data of the single piezoelectric crystal at different times, considering to the different adsorption-desorption dynamics of BTEX compounds. Using principal component analysis, it was found that over 90% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful identification of benzene and toluene was possible through the principal component analysis of the transient responses of the polystyrene modified QCN sensor. The results showed that the polystyrene-modified QCN had favorable identification and quantification performances for the BTEX compounds. KW - Biosensor KW - Quartz crystal nanobalance (QCN) KW - BTEX compounds KW - principal component Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1434 ER - TY - CHAP A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Preface of the Special Issue of I3S 2005 in Jülich (Germany) N2 - International Symposium on Sensor Science, I3S 2005 <3; 2005; Juelich, Germany> In: Sensors 2006, 6, 260-261 ISSN 1424-8220 KW - Biosensor KW - I3S 2005 KW - International Symposium on Sensor Science Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1365 ER - TY - CHAP A1 - Pijanowska, Dorota G. A1 - Remiszewska, Elzbieta T1 - pH-based detection of phenylalnine by potentiometric and colorimetric methods N2 - In this paper, methods of sample preparation for potentiometric measurement of phenylalanine are presented. Basing on the spectrophotometric measurements of phenylalanine, the concentrations of reagents of the enzymatic reaction (10 mM L-Phe, 0,4 mM NAD+, 2U L-PheDH) were determined. Then, the absorption spectrum of the reaction product, NADH, was monitored (maximum peak at 340 nm). The results obtained by the spectrophotometric method were compared with the results obtained by the colourimetry, using pH indicators. The above-mentioned two methods will be used as references for potentiometric measurements of phenylalanine concentration. KW - Biosensor KW - Phenylalanine determination KW - enzymatic methods KW - pH-based biosensing Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1536 ER - TY - CHAP A1 - Arida, Hassan A. A1 - Kloock, Joachim P. A1 - Schöning, Michael Josef T1 - Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations N2 - A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thinfilm sensors. KW - Biosensor KW - Heavy metal detection KW - thin-film microsensors KW - organic PVC membranes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1545 ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abdelghani, Adnane T1 - Nanoscale Science and Technology (NS&T’12) : Proceedings Book Humboldt Kolleg <2012, Tunisia> ; Tunisia, 17-19 March, 2012 / ed. by Michael J. Schöning ; Adnane Abdelghani N2 - Proceedings of the 2nd Humboldt Kolleg, Hammamet, Tunisia Organizer: Alexander von Humboldt Stiftung, Germany. pdf 184 p. Welcome Address Dear Participants, Welcome to the 2nd Humboldt Kolleg in “Nanoscale Science and Technology” (NS&T’12) in Tunisia, sponsored by the "Alexander von Humboldt" foundation. The NS&T’12 multidisciplinary scientific program includes seven "hot" topics dealing with "Nanoscale Science and Technology" covering basic and application-oriented research as well as industrial (market) aspects: - Molecular Biophyics, Spectroscopy Techniques, Imaging Microscopy - Nanomaterials Synthesis for Medicine and Bio-chemical Sensors - Nanostructures, Semiconductors, Photonics and Nanodevices - New Technologies in Market Industry - Environment, Electro-chemistry, Bio-polymers and Fuel Cells - Nanomaterials, Photovoltaic, Modelling, Quantum Physics - Microelectronics, Sensors Networks and Embedded Systems We are deeply indebted to all members of the Scientific Committee and General Chairs for joint Sessions and to all speakers and chairmen, who have dedicated invaluable time and efforts for the realization of this event. On behalf of the Organizing Committee, we are cordially inviting you to join the conference and hope that your stay will be fruitful, rewarding and enjoyable. Prof. Dr. Michael J. Schöning, Prof. Dr. Adnane Abdelghani KW - Biosensor KW - Nanotechnologie KW - Nanomaterial KW - Nano Materials KW - Bio-Sensors Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-3544 ER -