TY - JOUR A1 - Meliß, Michael A1 - Neskakis, A. A1 - Plettner-Marliani, J. A1 - Lange, C. A1 - Hövelmann, A. A1 - Schumacher, J. T1 - Waste water recycling supplied by renewable energies : basic conditions and possible treatment technologies JF - Renewable energy. Vol. 14 (1998), iss. 1-4. 6th Arab International Solar Energy Conference: Bringing Solar Energy into the Daylight, Muscat, Sultanate of Oman, 29.03.-01.04.1998 Y1 - 1998 SN - 1879-0682 (E-Book); 0960-1481 (Print) SP - 325 EP - 331 ER - TY - JOUR A1 - Herrmann, Ulf A1 - Kelly, Bruce A1 - Price, Henry T1 - Two Tank Molten Salt Storage for Parabolic Trough Solar Power Plants JF - Energy : the international journal Y1 - 2002 U6 - http://dx.doi.org/10.1016/S0360-5442(03)00193-2 SN - 0360-5442 N1 - SolarPACES 2002, Zürich, Switzerland, 4–6 September 2002 VL - 29 IS - 5-6 (Special Issue SolarPaces) SP - 883 EP - 893 ER - TY - JOUR A1 - Dersch, Jürgen A1 - Geyer, Michael A1 - Herrmann, Ulf A1 - Jones, Scott A. A1 - Kelly, Bruce A1 - Kistner, Rainer A1 - Ortmanns, Winfried A1 - Pitz-Paal, Robert A1 - Price, Henry T1 - Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems JF - Energy : the international journal Y1 - 2004 U6 - http://dx.doi.org/10.1016/S0360-5442(03)00199-3 SN - 0360-5442 N1 - SolarPACES 2002, Zürich, Switzerland, 4–6 September 2002 VL - 29 IS - 5-6 (Special Issue SolarPaces) SP - 947 EP - 959 ER - TY - JOUR A1 - Rau, Christoph A1 - Alexopoulos, Spiros A1 - Breitbach, Gerd A1 - Hoffschmidt, Bernhard A1 - Latzke, Markus A1 - Sattler, Johannes, Christoph T1 - Transient simulation of a solar-hybrid tower power plant with open volumetric receiver at the location Barstow JF - Energy procedia : proceedings of the SolarPACES 2013 International Conference N2 - In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine's flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well as in any intermediate load levels where the solar portion can vary between 0 to 100%. The simulated plant is based on the configuration of a solar-hybrid power tower project, which is in planning for a site in Northern Algeria. The meteorological data for Barstow-Daggett was taken from the software meteonorm. The solar power tower simulation tool has been developed in the simulation environment MATLAB/Simulink and is validated. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.egypro.2014.03.157 SN - 1876-6102 VL - 49 SP - 1481 EP - 1490 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hagenkamp, Markus A1 - Blanke, Tobias A1 - Döring, Bernd T1 - Thermoelectric building temperature control: a potential assessment JF - International Journal of Energy and Environmental Engineering N2 - This study focuses on thermoelectric elements (TEE) as an alternative for room temperature control. TEE are semi-conductor devices that can provide heating and cooling via a heat pump effect without direct noise emissions and no refrigerant use. An efficiency evaluation of the optimal operating mode is carried out for different numbers of TEE, ambient temperatures, and heating loads. The influence of an additional heat recovery unit on system efficiency and an unevenly distributed heating demand are examined. The results show that TEE can provide heat at a coefficient of performance (COP) greater than one especially for small heating demands and high ambient temperatures. The efficiency increases with the number of elements in the system and is subject to economies of scale. The best COP exceeds six at optimal operating conditions. An additional heat recovery unit proves beneficial for low ambient temperatures and systems with few TEE. It makes COPs above one possible at ambient temperatures below 0 ∘C. The effect increases efficiency by maximal 0.81 (from 1.90 to 2.71) at ambient temperature 5 K below room temperature and heating demand Q˙h=100W but is subject to diseconomies of scale. Thermoelectric technology is a valuable option for electricity-based heat supply and can provide cooling and ventilation functions. A careful system design as well as an additional heat recovery unit significantly benefits the performance. This makes TEE superior to direct current heating systems and competitive to heat pumps for small scale applications with focus on avoiding noise and harmful refrigerants. Y1 - 2021 U6 - http://dx.doi.org/10.1007/s40095-021-00424-x N1 - Corresponding author: Markus Hagenkamp VL - 13 SP - 241 EP - 254 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hennecke, Klaus A1 - Schwarzbözl, Peter A1 - Hoffschmidt, Bernhard A1 - Göttsche, Joachim A1 - Koll, G. A1 - Beuter, M. A1 - Hartz, T. T1 - The solar power tower Jülich – a solar thermal power plant for test and demonstration of air receiver JF - Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao Y1 - 2007 SN - 978-7-302-16146-2 N1 - Solar World Congress <2007, Beijing> ; International Solar Energy Society SP - 1749 EP - 1753 PB - Tsinghua Univ. Press CY - Beijing ER - TY - JOUR A1 - Meliß, Michael A1 - Späte, Frank T1 - The solar heating system with seasonal storage at the Solar-Campus Jülich JF - Solar energy. Vol. 69 (2000), iss. 6 Y1 - 2000 SN - 0038-092X SP - 525 EP - 533 ER - TY - JOUR A1 - Herrmann, Ulf A1 - Lippke, F. T1 - The influence of transients on the design of DSG solar fields JF - Journal de Physique IV : proceedings Y1 - 1999 SN - 2-86883-402-7 U6 - http://dx.doi.org/10.1051/jp4:1999377 SN - 1764-7177 (Online) SN - 1155-4339 (Print) VL - 9 IS - PR3 SP - 489 EP - 494 ER - TY - JOUR A1 - Puppe, Michael A1 - Giuliano, Stefano A1 - Frantz, Cathy A1 - Uhlig, Ralf A1 - Schumacher, Ralph A1 - Ibraheem, Wagdi A1 - Schmalz, Stefan A1 - Waldmann, Barbara A1 - Guder, Christoph A1 - Peter, Dennis A1 - Schwager, Christian A1 - Teixeira Boura, Cristiano José A1 - Alexopoulos, Spiros A1 - Spiegel, Michael A1 - Wortmann, Jürgen A1 - Hinrichs, Matthias A1 - Engelhard, Manfred A1 - Aust, Michael T1 - Techno-economic optimization of molten salt solar tower plants JF - AIP Conference Proceedings art.no. 040033 N2 - In this paper the results of a techno-economic analysis of improved and optimized molten salt solar tower plants (MSSTP plants) are presented. The potential improvements that were analyzed include different receiver designs, different designs of the HTF-system and plant control, increased molten salt temperatures (up to 640°C) and multi-tower systems. Detailed technological and economic models of the solar field, solar receiver and high temperature fluid system (HTF-system) were developed and used to find potential improvements compared to a reference plant based on Solar Two technology and up-to-date cost estimations. The annual yield model calculates the annual outputs and the LCOE of all variants. An improved external tubular receiver and improved HTF-system achieves a significant decrease of LCOE compared to the reference. This is caused by lower receiver cost as well as improvements of the HTF-system and plant operation strategy, significantly reducing the plant own consumption. A novel star receiver shows potential for further cost decrease. The cavity receiver concepts result in higher LCOE due to their high investment cost, despite achieving higher efficiencies. Increased molten salt temperatures seem possible with an adapted, closed loop HTF-system and achieve comparable results to the original improved system (with 565°C) under the given boundary conditions. In this analysis all multi tower systems show lower economic viability compared to single tower systems, caused by high additional cost for piping connections and higher cost of the receivers. REFERENCES Y1 - 2019 U6 - http://dx.doi.org/10.1063/1.5067069 VL - 2033 IS - Issue 1 PB - AIP Publishing CY - Melville, NY ER - TY - JOUR A1 - Herrmann, Ulf A1 - Kearney, David W. T1 - Survey of Thermal Energy Storage for Parabolic Trough Power Plants JF - Journal of Solar Energy Engineering Y1 - 2002 U6 - http://dx.doi.org/10.1115/1.1467601 SN - 1528-8986 (Online) SN - 0199-6231 (Print) VL - 124 IS - 2 SP - 145 EP - 152 ER -