TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Mechanics of soft tissue reactions to textile mesh implants T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment. Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_11 SP - 251 EP - 275 PB - Springer CY - Singapore ER - TY - CHAP A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Slabu, Ioana T1 - Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating T2 - Magnetic nanoparticles in human health and medicine Y1 - 2021 SN - 978-1-119-75467-1 SP - 327 EP - 354 PB - Wiley-Blackwell CY - Hoboken, New Jeersey ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Poghossian, Arshak A1 - Miyamoto, K.I. A1 - Werner, C.F. A1 - Krause, S. A1 - Yoshinobu, T. T1 - Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging T2 - Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7 Y1 - 2018 SN - 9780128097397 SP - 295 EP - 308 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Digel, Ilya A1 - Mansurov, Zulkhair A1 - Biisenbaev, Makhmut A1 - Savitskaya, Irina A1 - Kistaubaeva, Aida A1 - Akimbekov, Nuraly A1 - Zhubanova, Azhar ED - Hu, Ning T1 - Heterogeneous Composites on the Basis of Microbial Cells and Nanostructured Carbonized Sorbents T2 - Composites and Their Applications N2 - The fact that microorganisms prefer to grow on liquid/solid phase surfaces rather than in the surrounding aqueous phase was noticed long time ago [1]. Virtually any surface – animal, mineral, or vegetable – is a subject for microbial colonization and subsequent biofilm formation. It would be adequate to name just a few notorious examples on microbial colonization of contact lenses, ship hulls, petroleum pipelines, rocks in streams and all kinds of biomedical implants. The propensity of microorganisms to become surface-bound is so profound and ubiquitous that it vindicates the advantages for attached forms over their free-ranging counterparts [2]. Indeed, from ecological and evolutionary standpoints, for many microorganisms the surface-bound state means dwelling in nutritionally favorable, non-hostile environments [3]. Therefore, in most of natural and artificial ecosystems surface-associated microorganisms vastly outnumber organisms in suspension and often organize into complex communities with features that differ dramatically from those of free cells [4]. Y1 - 2012 SN - 978-953-51-0706-4 U6 - http://dx.doi.org/10.5772/47796 SP - 249 EP - 272 PB - Intech CY - London ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - CHAP A1 - Dikta, Gerhard T1 - Fundamentals of applied probability and basic statistics T2 - Critical care nephrology / [Hrsg.:] Claudio Ronco and Rinaldo Bellomo Y1 - 1998 SN - 978-94-010-6306-7 SP - 51 EP - 61 PB - Springer CY - Dordrecht ER - TY - CHAP A1 - Akimbekov, Nuraly A1 - Zhanadilovna, Abdieva G. A1 - Ualieva, Perizat S. A1 - Abaihanovna, Zhusipova D. A1 - Digel, Ilya A1 - Savitskaya, Irina S. A1 - Zhubanova, Azhar Achmet T1 - Functionalization of Carbon Based Wound Dressings with Antimicrobial Phytoextracts for Bioactive Treatment of Septic Wounds T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - The treatment of septic wounds with curative dressings based on biocomposites containing sage and marigold phytoextracts was effective in in vitro and in vivo experiments. These dressings caused the purification of the wound surface from purulent-necrotic masses three days earlier than in the other experimental groups. The consequence of an increase in incidents of severe course of the wound and the observed tendency to increase the number of adverse effects is the development of long-term recurrent wound processes. To treat purulent wounds, the following tactics were used: The purulent wounds of animals were covered with the examined wound dressing, and then the next day samples were taken, the procedure was performed once in 2 days. To obtain the active nanostructured sorbents such as carbonized rice husks, they are functionalized with biologically active components possessing antimicrobial, anti-inflammatory, antitoxic, immunomodulating, antiallergic and other types of properties. Y1 - 2020 SN - 978-981-4800-27-3 U6 - http://dx.doi.org/10.1201/9780429428647-11 SP - 211 EP - 228 PB - Jenny Stanford Publishing CY - Singapore ER - TY - CHAP A1 - Bialonski, Stephan A1 - Lehnertz, Klaus T1 - From time series to complex networks: an overview T2 - Recent Advances in Predicting and Preventing Epileptic Seizures: Proceedings of the 5th International Workshop on Seizure Prediction N2 - The network approach towards the analysis of the dynamics of complex systems has been successfully applied in a multitude of studies in the neurosciences and has yielded fascinating insights. With this approach, a complex system is considered to be composed of different constituents which interact with each other. Interaction structures can be compactly represented in interaction networks. In this contribution, we present a brief overview about how interaction networks are derived from multivariate time series, about basic network characteristics, and about challenges associated with this analysis approach. Y1 - 2013 SN - 978-981-4525-36-7 U6 - http://dx.doi.org/10.1142/9789814525350_0010 SP - 132 EP - 147 ER - TY - CHAP A1 - Lehnertz, Klaus A1 - Bialonski, Stephan A1 - Horstmann, Marie-Therese A1 - Krug, Dieter A1 - Rothkegel, Alexander A1 - Staniek, Matthäus A1 - Wagner, Tobias T1 - Epilepsy T2 - Reviews of Nonlinear Dynamics and Complexity, Volume 2 Y1 - 2010 SN - 9783527628001 U6 - http://dx.doi.org/10.1002/9783527628001.ch5 SP - 159 EP - 200 PB - Wiley-VCH ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Poghossian, Arshak A1 - Glück, Olaf A1 - Thust, Marion T1 - Electrochemical methods for the determination of chemical variables in aqueous media T2 - Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement Y1 - 2014 SN - 978-1-4398-4891-3 SP - 55-1 EP - 55-54 PB - CRC Pr. CY - Boca Raton, Fla. ER -