TY - CHAP A1 - Kern, Alexander A1 - Imani Vashiani, Anahita A1 - Timmermanns, Tobias T1 - Threat for human beings due to touch voltages and body currents caused by direct lightning strikes in case of non-isolated lightning protection systems using natural components T2 - 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA) N2 - For typical cases of non-isolated lightning protection systems (LPS) the impulse currents are investigated which may flow through a human body directly touching a structural part of the LPS. Based on a basic LPS model with conventional down-conductors especially the cases of external and internal steel columns and metal façades are considered and compared. Numerical simulations of the line quantities voltages and currents in the time domain are performed with an equivalent circuit of the entire LPS. As a result it can be stated that by increasing the number of conventional down-conductors and external steel columns the threat for a human being can indeed be reduced, but not down to an acceptable limit. In case of internal steel columns used as natural down-conductors the threat can be reduced sufficiently, depending on the low-resistive connection of the steel columns to the lightning equipotential bonding or the earth termination system, resp. If a metal façade is used the threat for human beings touching is usually very low, if the façade is sufficiently interconnected and multiply connected to the lightning equipotential bonding or the earth termination system, resp. KW - Lightning protection system KW - down-conductor KW - steel columns KW - metal façade KW - touch voltage Y1 - 2021 SN - 978-1-6654-2346-5 U6 - http://dx.doi.org/10.1109/ICLPandSIPDA54065.2021.9627465 N1 - 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), 20-26 Sept. 2021, Colombo, Sri Lanka PB - IEEE ER - TY - CHAP A1 - El Moussaoui, Noureddine A1 - Kassmi, Khalil A1 - Alexopoulos, Spiros A1 - Schwarzer, Klemens A1 - Chayeb, Hamid A1 - Bachiri, Najib T1 - Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy T2 - Materialstoday: Proceedings Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.matpr.2021.03.115 SN - 2214-7853 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Pavese, Alberto A1 - Lanese, Igor A1 - Hoffmeister, Benno A1 - Pinkawa, Marius A1 - Vulcu, Mihai-Cristian A1 - Bursi, Oreste A1 - Nardin, Chiara A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca A1 - Fragiadakis, Michalis A1 - Weber, Felix A1 - Huber, Peter A1 - Renault, Philippe A1 - Gündel, Max A1 - Dyke, Shirley A1 - Ciucci, M. A1 - Marino, A. T1 - Seismic performance of multi-component systems in special risk industrial facilities T2 - 17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 ER - TY - JOUR A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Paolacci, Fabrizio A1 - Marinković, Marko A1 - Lanese, Igor A1 - Nardin, Chiara A1 - Quinci, Gianluca ED - Yang, J. T1 - Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing JF - Engineering Structures N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions. KW - Multi-storey KW - Frame structure KW - Earthquake KW - Tank KW - Piping Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.engstruct.2021.112681 SN - 0141-0296 VL - 243 IS - 15 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Milkova, Kristina A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Region-sensitive comprehensive procedure for determination of seismic fragility curves T2 - 1st Croatian Conference on Earthquake Engineering 1CroCEE 22-24 March 2021 Zagreb, Croatia N2 - Seismic vulnerability estimation of existing structures is unquestionably interesting topic of high priority, particularly after earthquake events. Having in mind the vast number of old masonry buildings in North Macedonia serving as public institutions, it is evident that the structural assessment of these buildings is an issue of great importance. In this paper, a comprehensive methodology for the development of seismic fragility curves of existing masonry buildings is presented. A scenario – based method that incorporates the knowledge of the tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity (determined via the Neo Deterministic approach) is used for calculation of the necessary response spectra. The capacity of the investigated masonry buildings has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) is used for verification of the structural safety of the structures Performance point, obtained from the intersection of the capacity of the building and the spectra used, is selected as a response parameter. The thresholds of the spectral displacement are obtained by splitting the capacity curve into five parts, utilizing empirical formulas which are represented as a function of yield displacement and ultimate displacement. As a result, four levels of damage limit states are determined. A maximum likelihood estimation procedure for the process of fragility curves determination is noted as a final step in the proposed procedure. As a result, region specific series of vulnerability curves for structures are defined. KW - seismic risk KW - seismic vulnerability KW - fragility curves KW - masonry structures Y1 - 2021 U6 - http://dx.doi.org/10.5592/CO/1CroCEE.2021.158 SP - 121 EP - 128 PB - University of Zagreb CY - Zagreb ER - TY - BOOK A1 - Pieper, Martin T1 - Quantum mechanics: Introduction to mathematical formulation N2 - Anyone who has always wanted to understand the hieroglyphs on Sheldon's blackboard in the TV series The Big Bang Theory or who wanted to know exactly what the fate of Schrödinger's cat is all about will find a short, descriptive introduction to the world of quantum mechanics in this essential. The text particularly focuses on the mathematical description in the Hilbert space. The content goes beyond popular scientific presentations, but is nevertheless suitable for readers without special prior knowledge thanks to the clear examples. KW - Quantenmechanik KW - Hilbert Room KW - Postulates KW - Schrödingers cat KW - Operators Y1 - 2021 SN - 978-3-658-32644-9 SN - 978-3-658-32645-6 U6 - http://dx.doi.org/10.1007/978-3-658-32645-6 PB - Springer CY - Wiesbaden ER - TY - CHAP A1 - Handschuh, Nils A1 - Stollenwerk, Dominik A1 - Borchert, Jörg T1 - Operation of thermal storage power plants under high renewable grid penetration T2 - NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems N2 - The planned coal phase-out in Germany by 2038 will lead to the dismantling of power plants with a total capacity of approx. 30 GW. A possible further use of these assets is the conversion of the power plants to thermal storage power plants; the use of these power plants on the day-ahead market is considerably limited by their technical parameters. In this paper, the influence of the technical boundary conditions on the operating times of these storage facilities is presented. For this purpose, the storage power plants were described as an MILP problem and two price curves, one from 2015 with a relatively low renewable penetration (33 %) and one from 2020 with a high renewable energy penetration (51 %) are compared. The operating times were examined as a function of the technical parameters and the critical influencing factors were investigated. The thermal storage power plant operation duration and the energy shifted with the price curve of 2020 increases by more than 25 % compared to 2015. KW - storage optimisation KW - storage dispatch KW - thermal storage Y1 - 2021 SN - 978-3-8007-5651-3 N1 - NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems. 13-14 September 2021. Hamburg, Germany SP - 261 EP - 265 PB - VDE Verlag CY - Berlin ER - TY - JOUR A1 - Blanke, Tobias A1 - Hagenkamp, Markus A1 - Döring, Bernd A1 - Göttsche, Joachim A1 - Reger, Vitali A1 - Kuhnhenne, Markus T1 - Net-exergetic, hydraulic and thermal optimization of coaxial heat exchangers using fixed flow conditions instead of fixed flow rates JF - Geothermal Energy N2 - Previous studies optimized the dimensions of coaxial heat exchangers using constant mass fow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar fow types. In contrast, in this study, fow conditions in the circular ring are kept constant (a set of fxed Reynolds numbers) during optimization. This approach ensures fxed fow conditions and prevents inappropriately high or low mass fow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic efort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass fow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefcients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy diference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy fux and hydraulic efort. The Reynolds number in the circular ring is instead of the mass fow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar fow and 60% for turbulent fow scenarios. Net-exergetic optimization shows a predominant infuence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the fow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics. Y1 - 2021 U6 - http://dx.doi.org/10.1186/s40517-021-00201-3 SN - 2195-9706 N1 - Corresponding author: Tobias Blanke VL - 9 IS - Article number: 19 PB - Springer CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph ED - Kuzmanović, Vladan ED - Ignjatović, Ivan T1 - Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies T2 - Civil Engineering 2021 – Achievements and Visions: Proceedings of the International Conferenecs celebrating 175th Anniversary of the Faculty of Civil Engineering, University of Belgrade, October 25 – 26, 2021 Belgrade, Serbia Y1 - 2021 PB - University of Belgrade CY - Belgrade ER - TY - CHAP A1 - Šakić, Bogdan A1 - Milijaš, Aleksa A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Influence of prior in-plane damage on the out-of-plane response of non-load bearing unreinforced masonry walls under seismic load T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Reinforced concrete frames with masonry infill walls are popular form of construction all over the world as well in seismic regions. While severe earthquakes can cause high level of damage of both reinforced concrete and masonry infills, earthquakes of lower to medium intensity some-times can cause significant level of damage of masonry infill walls. Especially important is the level of damage of face loaded infill masonry walls (out-of-plane direction) as out-of-plane load cannot only bring high level of damage to the wall, it can also be life-threating for the people near the wall. The response in out-of-plane direction directly depends on the prior in-plane damage, as previous investigation shown that it decreases resistance capacity of the in-fills. Behaviour of infill masonry walls with and without prior in-plane load is investigated in the experimental campaign and the results are presented in this paper. These results are later compared with analytical approaches for the out-of-plane resistance from the literature. Conclusions based on the experimental campaign on the influence of prior in-plane damage on the out-of-plane response of infill walls are compared with the conclusions from other authors who investigated the same problematic. KW - Earthquake Engineering KW - Unreinforced masonry walls KW - Out-of-plane load KW - In- plane damage KW - Out-of-plane failure Y1 - 2021 SN - 9786188507258 U6 - http://dx.doi.org/10.7712/120121.8527.18913 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 808 EP - 828 PB - National Technical University of Athens CY - Athen ER -