TY - CHAP A1 - Pauksztat, Anja A1 - Kuperjans, Isabel A1 - de Hesselle, M. T1 - Referenzformeln für Energiebedarf und CO2-Emissionen in der Glasindustrie T2 - Energieeffizienz - Chancen für die Zukunft : Tagung Berlin, 14. und 15. November 2006. - (VDI-Berichte ; 1951) Y1 - 2006 SN - 3-18-091951-5 SP - 179 EP - 190 PB - VDI-Verl. CY - Düsseldorf ET - Nichtred. Ms.-Dr. ER - TY - CHAP A1 - Kurz, Melanie T1 - Recognition of shape in virtual visualizations T2 - Proceedings : November 15 - 17, 2006, Technische Universität Darmstadt, Darmstadt, Germany ; PACE, Partners for the advancement of collaborative engineering education Y1 - 2006 SN - 978-3-00-020161-5 N1 - International PACE Forum Collaborative Visualization ; (2006, Darmstadt) SP - 203 EP - 209 PB - Techn. Univ. CY - Darmstadt ER - TY - BOOK A1 - Chwallek, Constanze A1 - Felden, Birgit T1 - RatingCheck : Wertschöpfungskette / Chwallek, Constanze ; Felden, Birgit Y1 - 2006 PB - Deutscher Sparkassen Verlag CY - Stuttgart ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Rapid Manufacturing - eine interdisziplinäre Strategie N2 - Als um 1987 ein Verfahren namens Stereolithographie und ein Stereolithography Apparatus (SLA) vorgestellt wurden, war der Traum von der Herstellung beliebiger dreidimensionaler Bauteile direkt aus Computerdaten und ohne bauteilspezifische Werkzeuge Realität geworden. Ein Anwendungs-Szenario wurde gleich mitgeliefert. Diese Technologie würde es möglich machen, die gesamte Ersatzteilversorgung der Amerikanischen Pazifikflotte mittels ein paar dieser Maschinen, umfangreicher Datenstätze und genügend Rohmaterial vor Ort auf einem Flugzeugträger direkt nach Bedarf zu fertigen. Diese Vorstellung definierte schon damals die direkte digitale Fertigung, das Rapid Manufacturing. In der Realität bestanden die mit diesem Verfahren hergestellten Bauteile nur aus Kunststoff, waren ungenau, bruchempfindlich und klebrig und allein in der Produktentwicklung, eben als Prototypen zu benutzen. Sie waren schnell verfügbar, weil zu Ihrer Herstellung keine Werkzeuge benötigt wurden. Folgerichtige und zudem modern hießen sie: Rapid Prototyping. Rapid Prototyping wurde schnell zum Synonym eines neuen Zweiges der Fertigungstechnik, der Generativen Fertigungstechnik. Die weitere Entwicklung brachte neue Verfahren, höhere Genauigkeiten, verbesserte Werkstoffe und neue Anwendungen. Die Herstellung von Negativen, also Werkzeugen, mit dem gleichen Verfahren wurde marketing-getrieben Rapid Tooling genannt und als die ersten Bauteile nicht mehr als Prototypen, sondern als Endprodukte eingesetzt wurden, nannte man dies Rapid Manufacturing - das Ziel war erreicht. War das Ziel wirklich erreicht? Ist es Rapid Manufacturing, wenn ein generativ gefertigtes Bauteil die gewünschte Spezifikation erreicht? Was muss passieren, damit aus dem Phänomen Rapid Prototyping eine Strategie wird, die geeignet ist, einen Paradigmenwechsel von der heutigen Hersteller-induzierten Massenproduktion von Massenartikeln zur Verbraucher-induzierten (und verantworteten) Massenproduktion von Einzelteilen für jedermann ermöglichen und möglicherweise unsere Arbeits- und Lebensformen tiefgreifend zu beeinflussen? Im Beitrag wird der Begriff der (Fertigungs-) Strategie „Rapid Manufacturing“ näher beleuchtet. Es wird diskutiert, welche Maßnahmen auf der technischen und der operative Ebene getroffen werden müssen, damit die generative Fertigungstechnik im Sinne dieser Strategie umgesetzt werden kann. Beispiele belegen, dass diese Entwicklung bereits begonnen hat und geben Anregungen für eine konstruktive Diskussion auf der RapidTech 2006. N2 - As a process called stereolithography and a stereolithography apparatus (SLA) was presented in 1987, the dream of manufacturing any three-dimensional component directly from computer data and without component-specific tools became reality. An application scenario was supplied at the same time. This technology would make it possible to produce the entire spare parts requirement of the American Pacific Fleet merely through the use of a couple of such machines, extensive datasets and enough raw material on board an aircraft carrier directly as required. This image defined direct digital fabrication, rapid manufacturing, even at that time. In reality, this procedure only managed to produce components in plastic which were imprecise, fragile and sticky and only usable as prototypes in product development. They were rapidly available, because no tools were required for their manufacture. Consequentially, they are now known as Rapid Prototyping in modern jargon. Rapid Prototyping quickly became a synonym for a new branch of production engineering known as generative production engineering. Continued development brought new processes, improved accuracy, improved materials and new applications. The manufacturing of negatives, in other words tools, using the same procedure was quickly named rapid tooling by the marketing sector, and once the first components were used as final products instead of just prototypes the process was renamed "rapid manufacturing" - the goal had been reached. Was the goal really reached? Is it rapid manufacturing if a generatively manufactured component reaches the required specifications? What has to happen so that the rapid prototyping phenomenon becomes a strategy which is suitable for enabling the paradigm change from current manufacture-induced mass production of mass articles to consumer-induced (and consumer-responsible) mass production of single parts for anyone, and in all possibility makes dramatic changes in our way of working and living? The lecture includes detailed information about the (production) strategy term "rapid manufacturing". We will be discussing which measures need to be taken on the technical and operative level so that generative production engineering can be implemented in the sense of this strategy. Examples will show that this development has already started, and should provoke stimulation leading to constructive discussion during RapidTech 2006. KW - Rapid prototyping KW - Rapid Manufacturing KW - Rapid Prototyping KW - Stereolithographie KW - Generative Fertigungstechnik KW - Rapid prototyping KW - rapid manufacturing Y1 - 2006 ER - TY - JOUR A1 - Hillgärtner, Michael A1 - Kappel, U. T1 - Radiating Impedance of Mains Cabling During Emissions Testing JF - EMC Europe 2006 Barcelona : International Symposium on Electromagnetic Compatibility; September 4 - 8, 2006, Campus Nord, Technical University of Catalonia, Barcelona, Spain / [organized by Technical University of Catalonia (UPC) ... Ed. and publ. by: Ferran Silva ...]. - Vol. 1: Proceedings 1 Y1 - 2006 SN - 84-689-9439-1 N1 - EMC Europe <7,2006,Barcelona>; International Symposium on Electromagnetic Compatibility <7, 2006, Barcelona> SP - 17 EP - 22 CY - Barcelona ER - TY - CHAP A1 - Mirmohseni, Abdolreza A1 - Rostamizadeh, Kobra T1 - Quartz crystal nanobalance in conjunction with principal component analysis for identification of volatile organic compounds N2 - Quartz crystal nanobalance (QCN) sensors are considered as powerful masssensitive sensors to determine materials in the sub-nanogram level. In this study, a single piezoelectric quartz crystal nanobalance modified with polystyrene was employed to detect benzene, toluene, ethylbenzene and xylene (BTEX compounds). The frequency shift of the QCN sensor was found to be linear against the BTEX compound concentrations in the range about 1-45 mg l-1. The correlation coefficients for benzene, toluene, ethylbenzene, and xylene were 0.991, 0.9977, 0.9946 and 0.9971, respectively. The principal component analysis was also utilized to process the frequency response data of the single piezoelectric crystal at different times, considering to the different adsorption-desorption dynamics of BTEX compounds. Using principal component analysis, it was found that over 90% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful identification of benzene and toluene was possible through the principal component analysis of the transient responses of the polystyrene modified QCN sensor. The results showed that the polystyrene-modified QCN had favorable identification and quantification performances for the BTEX compounds. KW - Biosensor KW - Quartz crystal nanobalance (QCN) KW - BTEX compounds KW - principal component Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1434 ER - TY - JOUR A1 - Heger, Michael T1 - Qualitätsentwicklung des wissenschaftlichen Service. Ansatz und Erfahrungen der Hochschuldidaktik und Studienberatung - Fachhochschule Aachen 2006 JF - Qualitätsentwicklung an Hochschulen : Erfahrungen und Lehren aus 10 Jahren Evaluation ; Dokumentation zur gleichnamigen Veranstaltung des Projekts Qualitätssicherung der HRK am 3. und 4. November 2005 im Bonner Wissenschaftszentrum / [HRK, Hochschulrektorenkonferenz. Herbsttagung "Qualitätsentwicklung an Hochschulen, Erfahrungen und Lehren aus 10 Jahren Evaluation. Red.: Jörn Alphei ...] Y1 - 2006 N1 - Beiträge zur Hochschulpolitik ; 2006,8 SP - 92 EP - 97 PB - HRK, Hochschulrektorenkonferenz CY - Bonn ER - TY - JOUR A1 - Ferrein, Alexander A1 - Schiffer, Stefan A1 - Lakemeyer, Gerhard T1 - Qualitative World Models for Soccer Robots / Schiffer, Stefan ; Ferrein, Alexander ; Lakemeyer, Gerhard JF - Qualitative constraint calculi : application and integration ; KI 2006, 14 - 19 June 2006, Bremen, Germany ; 29th Annual German Conference on Artificial Intelligence ; workshop / Stefan Wölfl ... (eds.) Y1 - 2006 SN - 3-88722-666-6 SP - 3 EP - 14 PB - Univ. CY - Bremen ER - TY - CHAP A1 - Platen, J. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Präparation von selbstjustierenden Nanostrukturen mittels Schichtausdehnungstechnik T2 - Sensoren und Mess-Systeme 2006 : Vorträge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau Y1 - 2006 SN - 3-8007-2939-3 SP - 277 EP - 280 PB - VDE Verl. CY - Berlin ER - TY - CHAP A1 - Hellmanns, Mark A1 - Böhm, Stefan A1 - Dilger, Klaus T1 - Progress of the manual application of adhesives T2 - Proceedings of the 3rd World Congress on Adhesion and Related Phenomena : WCARP-III, October 15 -18, 2006, Beijing, China Y1 - 2006 SP - 275 EP - 277 PB - Beijing Adhesion Society of China CY - Beijing ER -