TY - JOUR A1 - Nobis, Moritz A1 - Schmitt, Carlo A1 - Schemm, Ralf A1 - Schnettler, Armin T1 - Pan-European CVAR-constrained stochastic unit commitment in day-ahead and intraday electricity markets JF - Energies N2 - The fundamental modeling of energy systems through individual unit commitment decisions is crucial for energy system planning. However, current large-scale models are not capable of including uncertainties or even risk-averse behavior arising from forecasting errors of variable renewable energies. However, risks associated with uncertain forecasting errors have become increasingly relevant within the process of decarbonization. The intraday market serves to compensate for these forecasting errors. Thus, the uncertainty of forecasting errors results in uncertain intraday prices and quantities. Therefore, this paper proposes a two-stage risk-constrained stochastic optimization approach to fundamentally model unit commitment decisions facing an uncertain intraday market. By the nesting of Lagrangian relaxation and an extended Benders decomposition, this model can be applied to large-scale, e.g., pan-European, power systems. The approach is applied to scenarios for 2023—considering a full nuclear phase-out in Germany—and 2035—considering a full coal phase-out in Germany. First, the influence of the risk factors is evaluated. Furthermore, an evaluation of the market prices shows an increase in price levels as well as an increasing day-ahead-intraday spread in 2023 and in 2035. Finally, it is shown that intraday cross-border trading has a significant influence on trading volumes and prices and ensures a more efficient allocation of resources. Y1 - 2020 U6 - https://doi.org/10.3390/en13092339 SN - 1996-1073 N1 - Special Issue Uncertainties and Risk Management in Competitive Energy Markets VL - 13 IS - Art. 2339 SP - 1 EP - 35 PB - MDPI CY - Basel ER - TY - JOUR A1 - Stulpe, Werner T1 - Pairwise coexistence of effects versus coexistence JF - Journal of Physics: Conference Series Y1 - 2020 U6 - https://doi.org/10.1088/1742-6596/1638/1/012004 SN - 1742-6596 VL - 1638 IS - 012004 SP - 1 EP - 21 PB - IOP CY - Bristol ER - TY - CHAP A1 - Marinković, Marko A1 - Butenweg, Christoph T1 - Out-of-plane behavior of decoupled masonry infills under seismic loading T2 - Proceedings of the 17th World Conference on Earthquake Engineering N2 - Masonry is used in many buildings not only for load-bearing walls, but also for non-load-bearing enclosure elements in the form of infill walls. Many studies confirmed that infill walls interact with the surrounding reinforced concrete frame, thus changing dynamic characteristics of the structure. Consequently, masonry infills cannot be neglected in the design process. However, although the relevant standards contain requirements for infill walls, they do not describe how these requirements are to be met concretely. This leads in practice to the fact that the infill walls are neither dimensioned nor constructed correctly. The evidence of this fact is confirmed by the recent earthquakes, which have led to enormous damages, sometimes followed by the total collapse of buildings and loss of human lives. Recently, the increasing effort has been dedicated to the approach of decoupling of masonry infills from the frame elements by introducing the gap in between. This helps in removing the interaction between infills and frame, but raises the question of out-of-plane stability of the panel. This paper presents the results of the experimental campaign showing the out-of-plane behavior of masonry infills decoupled with the system called INODIS (Innovative decoupled infill system), developed within the European project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings). Full scale specimens were subjected to the different loading conditions and combinations of in-plane and out-of-plane loading. Out-of-plane capacity of the masonry infills with the INODIS system is compared with traditionally constructed infills, showing that INODIS system provides reliable out-of-plane connection under various loading conditions. In contrast, traditional infills performed very poor in the case of combined and simultaneously applied in-plane and out-of-plane loading, experiencing brittle behavior under small in-plane drifts followed by high out-of-plane displacements. Decoupled infills with the INODIS system have remained stable under out-of-plane loads, even after reaching high in-plane drifts and being damaged. KW - in-plane KW - out-of-plane KW - INODIS KW - earthquake KW - connection detail Y1 - 2020 N1 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021 N1 - (Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt) ER - TY - JOUR A1 - Rausch, Valentin A1 - Harbrecht, Andreas A1 - Kahmann, Stephanie Lucina A1 - Fenten, Thomas A1 - Jovanovic, Nebojsa A1 - Hackl, Michael A1 - Müller, Lars P. A1 - Staat, Manfred A1 - Wegmann, Kilian T1 - Osteosynthesis of Phalangeal Fractures: Biomechanical Comparison of Kirschner Wires, Plates, and Compression Screws JF - The Journal of Hand Surgery N2 - Purpose The aim of this study was to compare several osteosynthesis techniques (intramedullary headless compression screws, T-plates, and Kirschner wires) for distal epiphyseal fractures of proximal phalanges in a human cadaveric model. Methods A total of 90 proximal phalanges from 30 specimens (index, ring, and middle fingers) were used for this study. After stripping off all soft tissue, a transverse distal epiphyseal fracture was simulated at the proximal phalanx. The 30 specimens were randomly assigned to 1 fixation technique (30 per technique), either a 3.0-mm intramedullary headless compression screw, locking plate fixation with a 2.0-mm T-plate, or 2 oblique 1.0-mm Kirschner wires. Displacement analysis (bending, distraction, and torsion) was performed using optical tracking of an applied random speckle pattern after osteosynthesis. Biomechanical testing was performed with increasing cyclic loading and with cyclic load to failure using a biaxial torsion-tension testing machine. Results Cannulated intramedullary compression screws showed significantly less displacement at the fracture site in torsional testing. Furthermore, screws were significantly more stable in bending testing. Kirschner wires were significantly less stable than plating or screw fixation in any cyclic load to failure test setup. Conclusions Intramedullary compression screws are a highly stable alternative in the treatment of transverse distal epiphyseal phalangeal fractures. Kirschner wires seem to be inferior regarding displacement properties and primary stability. Clinical relevance Fracture fixation of phalangeal fractures using plate osteosynthesis may have the advantage of a very rigid reduction, but disadvantages such as stiffness owing to the more invasive surgical approach and soft tissue irritation should be taken into account. Headless compression screws represent a minimally invasive choice for fixation with good biomechanical properties. Y1 - 2020 U6 - https://doi.org/10.1016/j.jhsa.2020.04.010 SN - 0363-5023 VL - 45 IS - 10 SP - 987.e1 EP - 987.e8 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Leise, Philipp A1 - Pelz, Peter F. T1 - Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig T2 - Operations Research Proceedings 2019 N2 - Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge. KW - Experimental validation KW - MINLP KW - Engineering optimization KW - Water supply system KW - Network design Y1 - 2020 SN - 978-3-030-48438-5 U6 - https://doi.org/10.1007/978-3-030-48439-2_58 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 481 EP - 488 PB - Springer CY - Cham ER - TY - JOUR A1 - Müller, Tim M. A1 - Leise, Philipp A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Optimization and validation of pumping system design and operation for water supply in high-rise buildings JF - Optimization and Engineering N2 - The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps’ characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer’s point of view, keeping in mind the economically important trade-off between investment and operation costs. KW - Technical Operations Research KW - MINLP KW - MILP KW - Experimental validation KW - Pumping systems Y1 - 2020 U6 - https://doi.org/10.1007/s11081-020-09553-4 SN - 1573-2924 VL - 2021 IS - 22 SP - 643 EP - 686 PB - Springer ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Chico Caminos, Ricardo Alexander A1 - Ürlings, Nicolas A1 - Dutta, Siddharth A1 - Ruiz, Victor A1 - Kalogirou, Soteris A1 - Ktistis, Panayiotis A1 - Agathokleous, Rafaela A1 - Jung, Christian A1 - Alexopoulos, Spiros A1 - Atti, Vikrama Nagababu A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus T2 - AIP Conference Proceedings N2 - As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 % of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingeniería, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented. Y1 - 2020 U6 - https://doi.org/10.1063/5.0029278 N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea IS - 2303 SP - 140004-1 EP - 140004-10 ER - TY - CHAP A1 - Duran Paredes, Ludwin A1 - Mottaghy, Darius A1 - Herrmann, Ulf A1 - Groß, Rolf Fritz T1 - Online ground temperature and soil moisture monitoring of a shallow geothermal system with non-conventional components T2 - EGU General Assembly 2020 N2 - We present first results from a newly developed monitoring station for a closed loop geothermal heat pump test installation at our campus, consisting of helix coils and plate heat exchangers, as well as an ice-store system. There are more than 40 temperature sensors and several soil moisture content sensors distributed around the system, allowing a detailed monitoring under different operating conditions.In the view of the modern development of renewable energies along with the newly concepts known as Internet of Things and Industry 4.0 (high-tech strategy from the German government), we created a user-friendly web application, which will connect the things (sensors) with the open network (www). Besides other advantages, this allows a continuous remote monitoring of the data from the numerous sensors at an arbitrary sampling rate.Based on the recorded data, we will also present first results from numerical simulations, taking into account all relevant heat transport processes.The aim is to improve the understanding of these processes and their influence on the thermal behavior of shallow geothermal systems in the unsaturated zone. This will in turn facilitate the prediction of the performance of these systems and therefore yield an improvement in their dimensioning when designing a specific shallow geothermal installation. Y1 - 2020 N1 - EGU General Assembly 2020, Online, 4–8 May 2020 ER - TY - JOUR A1 - Engemann, Heiko A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Cönen, Patrick A1 - Dawar, Harshal T1 - OMNIVIL - an autonomous mobile manipulator for flexible production JF - Sensors Y1 - 2020 SN - 1424-8220 U6 - https://doi.org/10.3390/s20247249 N1 - Special issue: Sensor Networks Applications in Robotics and Mobile Systems VL - 20 IS - 24, art. no. 7249 SP - 1 EP - 30 PB - MDPI CY - Basel ER - TY - CHAP A1 - Kleefeld, Andreas ED - Constanda, Christian T1 - Numerical calculation of interior transmission eigenvalues with mixed boundary conditions T2 - Computational and Analytic Methods in Science and Engineering N2 - Interior transmission eigenvalue problems for the Helmholtz equation play an important role in inverse wave scattering. Some distribution properties of those eigenvalues in the complex plane are reviewed. Further, a new scattering model for the interior transmission eigenvalue problem with mixed boundary conditions is described and an efficient algorithm for computing the interior transmission eigenvalues is proposed. Finally, extensive numerical results for a variety of two-dimensional scatterers are presented to show the validity of the proposed scheme. Y1 - 2020 SN - 978-3-030-48185-8 (Hardcover) U6 - https://doi.org/10.1007/978-3-030-48186-5_9 SP - 173 EP - 195 PB - Birkhäuser CY - Cham ER -