TY - BOOK A1 - Pieper, Martin T1 - Spektralrandintegralmethoden zur Maxwell-Gleichung Y1 - 2007 SN - 978-3-89959-635-9 N1 - Zugl.: Göttingen, Univ., Diss., 2007 PB - Der Andere Verl. CY - Tönning [u.a.] ER - TY - JOUR A1 - Pieper, Martin T1 - Nonlinear integral equations for an inverse electromagnetic scattering problem JF - Journal of Physics Conference Series. 124 (2008) Y1 - 2008 SN - 1742-6596 ER - TY - JOUR A1 - Pieper, Martin A1 - Ivanyshyn, Olha T1 - Nonlinear integral equations for a 3D inverse acoustic scattering problem : abstract / O. Ivanyshyn and M. Pieper Y1 - 2008 N1 - World Congress on Computational Mechanics <8, 2008, Venedig> ; European Congress on Computational Methods in Applied Sciences and Engineering <5, 2008, Venedig> ER - TY - JOUR A1 - Pieper, Martin T1 - Vector hyperinterpolation on the sphere JF - Journal of approximation theory. 156 (2009), H. 2 Y1 - 2009 SN - 0021-9045 SP - 173 EP - 186 ER - TY - JOUR A1 - Ewe, Hendrik A1 - Klein, Peter A1 - Pieper, Martin A1 - Füldner, G. T1 - Heat conductivity in sintered aluminium fibers JF - Cellular metals for structural and functional applications : CELLMET 2008 ; proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications held October 8 - 10, 2008 in Dresden, Germany / ed. by Günter Stephani Y1 - 2009 SP - 187 EP - 193 PB - Fraunhofer IFAM CY - Dresden ER - TY - JOUR A1 - Pieper, Martin A1 - Klein, Peter T1 - Numerical solution of the heat equation with non-linear, time derivative-dependent source term JF - International Journal for Numerical Methods in Engineering N2 - The mathematical modeling of heat conduction with adsorption effects in coated metal structures yields the heat equation with piecewise smooth coefficients and a new kind of source term. This term is special, because it is non-linear and furthermore depends on a time derivative. In our approach we reformulated this as a new problem for the usual heat equation, without source term but with a new non-linear coefficient. We gave an existence and uniqueness proof for the weak solution of the reformulated problem. To obtain a numerical solution, we developed a semi-implicit and a fully implicit finite volume method. We compared these two methods theoretically as well as numerically. Finally, as practical application, we simulated the heat conduction in coated aluminum fibers with adsorption in the zeolite coating. Copyright © 2010 John Wiley & Sons, Ltd. Y1 - 2010 U6 - http://dx.doi.org/10.1002/nme.2937 SN - 0029-5981 VL - 84 IS - 10 SP - 1205 EP - 1221 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Pieper, Martin A1 - Klein, Peter T1 - A simple and accurate numerical network flow model for bionic micro heat exchangers JF - Heat mass transfer Y1 - 2011 SN - 0947-7411 VL - 47 IS - 5 SP - 491 EP - 503 PB - Springer CY - Berlin ER - TY - JOUR A1 - Pieper, Martin T1 - Multiobjective optimization with expensive objectives applied to a thermodynamic material design problem JF - Proceedings in applied mathematics and mechanics : PAMM. 11 (2011), H. 1 Y1 - 2011 SN - 1617-7061 SP - 733 EP - 734 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Pieper, Martin A1 - Klein, Peter T1 - Application of simple, periodic homogenization techniques to non-linear heat conduction problems in non-periodic, porous media JF - Heat mass transfer N2 - Often, detailed simulations of heat conduction in complicated, porous media have large runtimes. Then homogenization is a powerful tool to speed up the calculations by preserving accurate solutions at the same time. Unfortunately real structures are generally non-periodic, which requires unpractical, complicated homogenization techniques. We demonstrate in this paper, that the application of simple, periodic techniques to realistic media, that are just close to periodic, gives accurate, approximative solutions. In order to obtain effective parameters for the homogenized heat equation, we have to solve a so called “cell problem”. In contrast to periodic structures it is not trivial to determine a suitable unit cell, which represents a non-periodic media. To overcome this problem, we give a rule of thumb on how to choose a good cell. Finally we demonstrate the efficiency of our method for virtually generated foams as well as real foams and compare these results to periodic structures. Y1 - 2012 U6 - http://dx.doi.org/10.1007/s00231-011-0879-4 SN - 0947-7411 VL - 48 IS - 2 SP - 291 EP - 300 PB - Springer CY - Berlin ER - TY - CHAP A1 - Pieper, Martin A1 - Konopka, Mahnaz T1 - Umgestaltung der Mathematik Anfängervorlesungen im Fachbereich Energietechnik T2 - Mathematik im Übergang Schule/Hochschule und im ersten Studienjahr : extended abstracts zur 2. khdm-Arbeitstagung 20.02. - 23.02.2013. (khdm-Report ; 13-01) Y1 - 2013 SP - 115 EP - 116 ER -