TY - GEN A1 - Rothkranz, Berit A1 - Krafft, Simone A1 - Tippkötter, Nils T1 - Media optimization for sustainable fuel production: How to produce biohydrogen from renewable resources with Thermotoga neapolitana T2 - Chemie Ingenieur Technik N2 - Hydrogen is playing an increasingly important role in research and politics as an energy carrier of the future. Since hydrogen has commonly been produced from methane by steam reforming, the need for climate-friendly, alternative production routes is emerging. In addition to electrolysis, fermentative routes for the production of so-called biohydrogen are "green" alternatives. The application of microorganisms offers the advantage of sustainable production from renewable resources using easily manageable technologies. In this project, the hyperthermophilic, anaerobic microorganism Thermotoga neapolitana is used for the productio nof biohydrogen from renewable resources. The enzymatically hydrolyzed resources were used in fermentation leading to yield coefficients of 1.8 mole H₂ per mole glucose when using hydrolyzed straw and ryegrass supplemented with medium, respectively. These results are similar to the hydrogen yields when using Thermotoga basal medium with glucose (TBGY) as control group. In order to minimize the supplementation of the hydrolysate and thus increase the economic efficiency of the process, the essential media components were identified. The experiments revealed NaCl, KCl, and glucose as essential components for cell growth as well as biohydrogen production. When excluding NaCl, a decrease of 96% in hydrogen production occured. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255305 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1298 EP - 1299 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Varriale, Ludovica A1 - Kuka, Katrin A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Use of a green biomass in a biorefinery platform T2 - Chemie Ingenieur Technik N2 - The emerging environmental issues due to the use of fossil resources are encouraging the exploration of new renewable resources. Biomasses are attracting more interest due to the low environmental impacts, low costs, and high availability on earth. In this scenario, green biorefineries are a promising platform in which green biomasses are used as feedstock. Grasses are mainly composed of cellulose and hemicellulose, and lignin is available in a small amount. In this work, a perennial ryegrass was used as feedstock to develop a green bio-refinery platform. Firstly, the grass was mechanically pretreated, thus obtaining a press juice and a press cake fraction. The press juice has high nutritional values and can be employed as part of fermentation media. The press cake can be employed as a substrate either in enzymatic hydrolysis or in solid-state fermentation. The overall aim of this work was to demonstrate different applications of both the liquid and the solid fractions. For this purpose, the filamentous fungus A. niger and the yeast Y. lipolythica were selected for their ability to produce citric acid. Finally, the possibility was assessed to use the press juice as part of fermentation media to cultivate S. cerevisiae and lactic acid bacteria for ethanol and lactic acid fermentation. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255095 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1299 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhantlessova, Sirina A1 - Savitskaya, Irina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Talipova, Aizhan A1 - Pogrebnjak, Alexander A1 - Digel, Ilya T1 - Advanced “Green” prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy JF - Polymers N2 - Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for “grafting” of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality. KW - coculture KW - pullulan KW - exopolysaccharides KW - prebiotic KW - bacterial cellulose Y1 - 2022 U6 - https://doi.org/10.3390/polym14153224 SN - 2073-4360 N1 - This article belongs to the Special Issue "Cellulose Based Composites" VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Lindner, Simon A1 - Burger, René A1 - Rutledge, Douglas N. A1 - Do, Xuan Tung A1 - Rumpf, Jessica A1 - Diehl, Bernd W. K. A1 - Schulze, Margit A1 - Monakhova, Yulia T1 - Is the calibration transfer of multivariate calibration models between high- and low-field NMR instruments possible? A case study of lignin molecular weight JF - Analytical chemistry N2 - Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize. Y1 - 2022 SN - 1520-6882 U6 - https://doi.org/10.1021/acs.analchem.1c05125 VL - 94 IS - 9 SP - 3997 EP - 4004 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Monakhova, Yulia A1 - Diehl, Bernd W.K. T1 - Nuclear magnetic resonance spectroscopy as an elegant tool for a complete quality control of crude heparin material JF - Journal of Pharmaceutical and Biomedical Analysis N2 - Nuclear magnetic resonance (NMR) spectrometric methods for the quantitative analysis of pure heparin in crude heparin is proposed. For quantification, a two-step routine was developed using a USP heparin reference sample for calibration and benzoic acid as an internal standard. The method was successfully validated for its accuracy, reproducibility, and precision. The methodology was used to analyze 20 authentic porcine heparinoid samples having heparin content between 4.25 w/w % and 64.4 w/w %. The characterization of crude heparin products was further extended to a simultaneous analysis of these common ions: sodium, calcium, acetate and chloride. A significant, linear dependence was found between anticoagulant activity and assayed heparin content for thirteen heparinoids samples, for which reference data were available. A Diffused-ordered NMR experiment (DOSY) can be used for qualitative analysis of specific glycosaminoglycans (GAGs) in heparinoid matrices and, potentially, for quantitative prediction of molecular weight of GAGs. NMR spectrometry therefore represents a unique analytical method suitable for the simultaneous quantitative control of organic and inorganic composition of crude heparin samples (especially heparin content) as well as an estimation of other physical and quality parameters (molecular weight, animal origin and activity). KW - NMR spectroscopy KW - Heparin KW - Crude heparin KW - USP KW - Ions Y1 - 2022 U6 - https://doi.org/10.1016/j.jpba.2022.114915 SN - 0731-7085 VL - 219 IS - Article number: 114915 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Burger, René A1 - Lindner, Simon A1 - Rumpf, Jessica A1 - Do, Xuan Tung A1 - Diehl, Bernd W.K. A1 - Rehahn, Matthias A1 - Monakhova, Yulia A1 - Schulze, Margit T1 - Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin JF - Journal of Pharmaceutical and Biomedical Analysis N2 - Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin’s molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6% and 12.9% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin’s molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems. KW - NMR KW - PLS-regression KW - Molecular weight determination KW - Chemometrics KW - Biomass Y1 - 2022 SN - 0731-7085 U6 - https://doi.org/10.1016/j.jpba.2022.114649 VL - 212 IS - Article number: 114649 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Monakhova, Yulia A1 - Soboleva, Polina M. A1 - Fedotova, Elena S. A1 - Musina, Kristina T. A1 - Burmistrova, Natalia A. T1 - Quantum chemical calculations of IR spectra of heparin disaccharide subunits JF - Computational and Theoretical Chemistry N2 - Heparin is a natural polysaccharide, which plays essential role in many biological processes. Alterations in building blocks can modify biological roles of commercial heparin products, due to significant changes in the conformation of the polymer chain. The variability structure of heparin leads to difficulty in quality control using different analytical methods, including infrared (IR) spectroscopy. In this paper molecular modelling of heparin disaccharide subunits was performed using quantum chemistry. The structural and spectral parameters of these disaccharides have been calculated using RHF/6-311G. In addition, over-sulphated chondroitin sulphate disaccharide was studied as one of the most widespread contaminants of heparin. Calculated IR spectra were analyzed with respect to specific structure parameters. IR spectroscopic fingerprint was found to be sensitive to substitution pattern of disaccharide subunits. Vibrational assignments of calculated spectra were correlated with experimental IR spectral bands of native heparin. Chemometrics was used to perform multivariate analysis of simulated spectral data. KW - IR spectroscopy KW - Chemometrics KW - Quantum chemistry KW - Molecular modelling KW - Quality control Y1 - 2022 SN - 2210-271X U6 - https://doi.org/10.1016/j.comptc.2022.113891 VL - 1217 IS - Article number: 113891 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Haeger, Gerrit A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent JF - Analytical Biochemistry N2 - An improved and convenient ninhydrin assay for aminoacylase activity measurements was developed using the commercial EZ Nin™ reagent. Alternative reagents from literature were also evaluated and compared. The addition of DMSO to the reagent enhanced the solubility of Ruhemann's purple (RP). Furthermore, we found that the use of a basic, aqueous buffer enhances stability of RP. An acidic protocol for the quantification of lysine was developed by addition of glacial acetic acid. The assay allows for parallel processing in a 96-well format with measurements microtiter plates. Y1 - 2022 U6 - https://doi.org/10.1016/j.ab.2022.114819 SN - 1096-0309 IS - 624 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Krafft, Simone A1 - Kuka, Katrin A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - Utilization of Lolium perenne varieties as a renewable substrate for single-cell proteins, lactate, and composite materials T2 - Chemie Ingenieur Technik N2 - Lolium perenne (perennial ryegrass) is aproductive and high-quality forage grass indigenous to Southern Europe, temperate Asia, and North Africa. Nowadays it is widespread and the dominant grass species on green areas in temperate climates. This abundant source of biomass is suitable for the development of bioeconomic processes because of its high cellulose and water-soluble carbohydrate content. In this work, novel breeds of the perennial ryegrass are being examined with regards to their quality parameters and biotechnological utilization options within the context of bioeconomy. Three processing operations are presented. In the first process, the perennial ryegrass is pretreated by pressing or hydrothermal extraction to derive glucosevia subsequent enzymatic hydrolysis of cellulose. A yield of up to 82 % glucose was achieved when using the hydrothermal ex-traction as pretreatment. In a second process, the ryegrass is used to produce lactic acid in high concentrations. The influence of the growth conditions and the cutting time on the carboxylic acid yield is investigated. A yield of lactic acid of above 150 g kg⁻¹ dry matter was achieved. The third process is to use Lolium perenne as a substrate in the fermentation of K. marxianus for the microbial production of single-cell proteins. The perennial ryegrass is screw-pressed and the press juice is used as medium. When supplementing the press juice with yeast media components, a biomass concentration of up to 16 g L⁻¹ could be achieved. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255306 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1303 EP - 1304 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Falkenberg, Fabian A1 - Kohn, Sophie A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ JF - FEBS Open Bio N2 - Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5% (w/v) SDS and 5% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications. KW - Bacillaceae KW - Biotechnological application KW - Broad pH spectrum KW - Subtilases KW - Subtilisin Y1 - 2023 U6 - https://doi.org/10.1002/2211-5463.13701 SN - 2211-5463 N1 - Corresponding author: Petra Siegert VL - 13 IS - 11 SP - 2035 EP - 2046 PB - Wiley CY - Hoboken, NJ ER -