TY - CHAP A1 - Wolf, Martin A1 - Lenz, Laura L. T1 - The economic effectiveness of serious games in the healthcare environment : application and evaluation of the Comparative Transformation Model (CTM) T2 - IEEE 3rd International Conference on Serious Games and Applications for Health : SeGAH 2014 ; Rio de Janeiro, Brazil, May 14 - 16 Y1 - 2015 SN - 978-1-4799-4823-9 U6 - http://dx.doi.org/10.1109/SeGAH.2014.7067089 SP - 135 EP - 142 PB - IEEE [u.a.] CY - Piscataway, NJ ER - TY - CHAP A1 - Rahier, Michael A1 - Ritz, Thomas A1 - Wallenborn, Ramona T1 - Information and communication technology for integrated mobility concepts such as E-carsharing T2 - E-Mobility in Europe : trends and good practice N2 - During the past decade attitude towards sharing things has changed extremely. Not just personal data is shared (e.g. in social networks) but also mobility. Together with the increased ecological awareness of the recent years, new mobility concepts have evolved. E-carsharing has become a symbol for these changes of attitude. The management of a shared car fleet, the energy management of electric mobility and the management of various carsharing users with individual likes and dislikes are just some of the major challenges of e-carsharing. Weaving it into integrated mobility concepts, this raises complexity even further. These challenges can only be overcome by an appropriate amount of well-shaped information available at the right place and time. In order to gather, process and share the required information, fleet cars have to be equipped with modern information and communication technology (ICT) and become so-called fully connected cars. Ensuring the usability of these ICT systems is another challenge that is often neglected, even though it is usability that makes carsharing comfortable, attractive and supports users’ new attitudes. By means of an integrated and consistent concept for human-machine interaction (HMI), the usability of such systems can be raised tremendously. KW - Information and communication technology KW - Fully connected car KW - E-carsharing KW - Mobility management KW - Integrated mobility Y1 - 2015 SN - 978-3-319-13193-1 U6 - http://dx.doi.org/10.1007/978-3-319-13194-8_17 SP - 311 EP - 326 PB - Springer CY - Cham [u.a.] ER - TY - CHAP A1 - Busse, Daniel A1 - Esch, Thomas A1 - Muntaniol, Roman T1 - Thermal management in E-carsharing vehicles - preconditioning concepts of passenger compartments T2 - E-Mobility in Europe : trends and good practice N2 - The issue of thermal management in electric vehicles includes the topics of drivetrain cooling and heating, interior temperature, vehicle body conditioning and safety. In addition to the need to ensure optimal thermal operating conditions of the drivetrain components (drive motor, battery and electrical components), thermal comfort must be provided for the passengers. Thermal comfort is defined as the feeling which expresses the satisfaction of the passengers with the ambient conditions in the compartment. The influencing factors on thermal comfort are the temperature and humidity as well as the speed of the indoor air and the clothing and the activity of the passengers, in addition to the thermal radiation and the temperatures of the interior surfaces. The generation and the maintenance of free visibility (ice- and moisture-free windows) count just as important as on-demand heating and cooling of the entire vehicle. A Carsharing climate concept of the innovative ec2go vehicle stipulates and allows for only seating areas used by passengers to be thermally conditioned in a close-to-body manner. To enable this, a particular feature has been added to the preconditioning of the Carsharing electric vehicle during the electric charging phase at the parking station. KW - Carsharing KW - Thermal management KW - Thermal comfort KW - Electrical vehicle KW - Passenger compartment Y1 - 2015 SN - 978-3-319-13193-1 U6 - http://dx.doi.org/10.1007/978-3-319-13194-8_18 SP - 327 EP - 343 PB - Springer CY - Cham [u.a.] ER - TY - JOUR A1 - Takenaga, Shoko A1 - Schneider, Benno A1 - Erbay, E. A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process JF - Physica status solidi (a) N2 - A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201532053 SN - 1862-6319 VL - 212 IS - 6 SP - 1347 EP - 1352 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Bäcker, Matthias A1 - Iken, Heiko A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Concept for a biomolecular logic chip with an integrated sensor and actuator function JF - Physica status solidi (a) N2 - A concept for a new generation of an integrated multi-functional biosensor/actuator system is developed, which is based on biomolecular logic principles. Such a system is expected to be able to detect multiple biochemical input signals simultaneously and in real-time and convert them into electrical output signals with logical operations such as OR, AND, etc. The system can be designed as a closed-loop drug release device triggered by an enzyme logic gate, while the release of the drug induced by the actuator at the required dosage and timing will be controlled by an additional drug sensor. Thus, the system could help to make an accurate and specific diagnosis. The presented concept is exemplarily demonstrated by using an enzyme logic gate based on a glucose/glucose oxidase system, a temperature-responsive hydrogel mimicking the actuator function and an insulin (drug) sensor. In this work, the results of functional testing of individual amperometric glucose and insulin sensors as well as an impedimetric sensor for the detection of the hydrogel swelling/shrinking are presented. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431913 SN - 1862-6319 VL - 212 IS - 6 SP - 1382 EP - 1388 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Warmer, Johannes A1 - Wagner, Patrick A1 - Schöning, Michael Josef A1 - Kaul, Peter T1 - Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors JF - Physica status solidi (a) Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431882 SN - 1862-6319 VL - 212 IS - 6 SP - 1289 EP - 1298 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Delle, Lotta E. A1 - Huck, Christina A1 - Bäcker, Matthias A1 - Müller, Frank A1 - Grandthyll, Samuel A1 - Jacobs, Karin A1 - Lilischkis, Rainer A1 - Vu, Xuan T. A1 - Schöning, Michael Josef A1 - Wagner, Patrick A1 - Thoelen, Roland A1 - Weil, Maryam A1 - Ingebrandt, Sven T1 - Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide JF - Physica status solidi (a) Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431863 SN - 1862-6319 VL - 212 IS - 6 SP - 1327 EP - 1334 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Kümmell, Steffen A1 - Hillgärtner, Michael T1 - Inductive charging comfortable and nonvisible charging stations for urbanised areas T2 - E-Mobility in Europe : trends and good practice N2 - For a wide acceptance of E-Mobility, a well-developed charging infrastructure is needed. Conductive charging stations, which are today’s state of the art, are of limited suitability for urbanised areas, since they cause a significant diversification in townscape. Furthermore, they might be destroyed by vandalism. Besides for those urbanistic reasons, inductive charging stations are a much more comfortable alternative, especially in urbanised areas. The usage of conductive charging stations requires more or less bulky charging cables. The handling of those standardised charging cables, especially during poor weather conditions, might cause inconvenience, such as dirty clothing etc. Wireless charging does not require visible and vandalism vulnerable charge sticks. No wired connection between charging station and vehicle is needed, which enable the placement below the surface of parking spaces or other points of interest. Inductive charging seems to be the optimal alternative for E-Mobility, as a high power transfer can be realised with a manageable technical and financial effort. For a well-accepted and working public charging infrastructure in urbanised areas it is essential that the infrastructure fits the vehicles’ needs. Hence, a well-adjusted standardisation of the charging infrastructure is essential. This is carried out by several IEC (International Electrotechnical Commission) and national standardisation committees. To ensure an optimised technical solution for future’s inductive charging infrastructures, several field tests had been carried out and are planned in near future. KW - E-mobility KW - Inductive charging KW - Charging stations KW - Urban areas Y1 - 2015 SN - 978-3-319-13193-1 U6 - http://dx.doi.org/10.1007/978-3-319-13194-8_16 SP - 297 EP - 309 PB - Springer CY - Cham [u.a.] ER - TY - CHAP A1 - Chanson, Hubert A1 - Bung, Daniel B. A1 - Matos, J. T1 - Stepped spillways and cascades T2 - Energy dissipation in hydraulic structures / Hubert Chanson (ed.) Y1 - 2015 SN - 978-1-138-02755-8 (print) ; 978-1-315-68029-3 (e-Book) SP - 45 EP - 64 PB - CRC Press CY - Boca Raton, Fla. [u.a.] ER - TY - CHAP A1 - Bung, Daniel B. ED - Rowinski, Pawel T1 - Laboratory models of free-surface flows T2 - Rivers - physical, fluvial and environmental processes N2 - Hydraulic modeling is the classical approach to investigate and describe complex fluid motion. Many empirical formulas in the literature used for the hydraulic design of river training measures and structures have been developed using experimental data from the laboratory. Although computer capacities have increased to a high level which allows to run complex numerical simulations on standard workstation nowadays, non-standard design of structures may still raise the need to perform physical model investigations. These investigations deliver insight into details of flow patterns and the effect of varying boundary conditions. Data from hydraulic model tests may be used for calibration of numerical models as well. As the field of hydraulic modeling is very complex, this chapter intends to give a short overview on capacities and limits of hydraulic modeling in regard to river flows and hydraulic structures only. The reader shall get a first idea of modeling principles and basic considerations. More detailed information can be found in the references. KW - Physical modeling KW - Similitude KW - Open channels KW - Hydraulic structures Y1 - 2015 SN - 978-3-319-17718-2 ; 978-3-319-17719-9 U6 - http://dx.doi.org/10.1007/978-3-319-17719-9_9 SP - 213 EP - 228 PB - Springer CY - Cham ER -