TY - CHAP A1 - Hüning, Felix A1 - Heuermann, Holger A1 - Wache, Franz-Josef T1 - Wireless CAN T2 - Tagungsband AALE 2018 : das Forum für Fachleute der Automatisierungstechnik aus Hochschulen und Wirtschaft ; 15. Fachkonferenz, Regensburg ; [15. Konferenz für Angewandte Automatisierungstechnik in Lehre und Entwicklung / TH Köln; VFAALE, Verein der Freunde und Förderer der Angewandten Automatisierungstechnik] N2 - Das vorgestellte System zu Wireless CAN bietet die Möglichkeit, CAN kabellos zu übertragen. Beide vorgestellten und entwickelten Konzepte funktionieren korrekt und ermöglichen den Auf-bau von kabellosen CAN Schnittstellen. Durch den kleinen Aufbau kann diese Technologie auch für eingebettete Systeme verwendet werden. Zudem bietet dieser Ansatz die Möglichkeit, durch die Entwicklung von geeigneten ICs die Größe des Systems bis auf Bauteilgröße zu reduzieren, um eine noch bessere Integration in eingebettete Systeme zu ermöglichen. Dadurch wird die Technologie attraktiv für Einsatzgebiete, wo die oben aufgelisteten Vorteile zum Tragen kommen können. Diese Einsatzgebiete können sowohl im Automobil als auch im Industriebereich liegen. Y1 - 2018 SP - 135 EP - 144 PB - VDE Verlag ER - TY - JOUR A1 - Wiegner, Jonas A1 - Volker, Hanno A1 - Mainz, Fabian A1 - Backes, Andreas A1 - Loeken, Michael A1 - Hüning, Felix T1 - Energy analysis of a wireless sensor node powered by a Wiegand sensor JF - Journal of Sensors and Sensor Systems (JSSS) N2 - This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed. Y1 - 2023 U6 - http://dx.doi.org/10.5194/jsss-12-85-2023 SN - 2194-878X N1 - Corresponding author: Felix Hüning VL - 12 IS - 1 SP - 85 EP - 92 PB - Copernicus Publ. CY - Göttingen ER -