TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species JF - Annual Review of Analytical Chemistry N2 - A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed. Y1 - 2017 U6 - https://doi.org/10.1146/annurev-anchem-061516-045158 SN - 1936-1327 VL - 10 SP - 225 EP - 246 PB - Annual Reviews CY - Palo Alto, Calif. ER - TY - JOUR A1 - Dikta, Gerhard T1 - Semi-parametric random censorship models JF - From Statistics to Mathematical Finance : Festschrift in Honour of Winfried Stute Y1 - 2017 SN - 978-3-319-50986-0 U6 - https://doi.org/10.1007/978-3-319-50986-0_3 SP - 43 EP - 56 PB - Springer CY - Berlin ER - TY - JOUR A1 - Wilke, Thomas T1 - Newly found plans for the chapel of the Holy Shroud JF - Studi Piemontesi Y1 - 2017 SN - 0392-7261 VL - XLVI IS - 1 SP - 75 EP - 85 ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Baumann, Martin A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia JF - Current Directions in Biomedical Engineering Y1 - 2017 U6 - https://doi.org/10.1515/cdbme-2017-0096 SN - 2364-5504 VL - 3 IS - 2 SP - 457 EP - 460 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Chen, Chao A1 - Jost, Peter A1 - Volker, Hanno A1 - Kaminski, Marvin A1 - Wirtssohn, Matti R. A1 - Engelmann, Ulrich M. A1 - Krüger, K. A1 - Schlich, Franziska F. A1 - Schlockermann, Carl A1 - Lobo, Ricardo P.S.M. A1 - Wuttig, Matthias T1 - Dielectric properties of amorphous phase-change materials JF - Physical Review B Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.95.094111 SN - 2469-9950 VL - 95 IS - 9 SP - Article number 094111 ER - TY - JOUR A1 - Sousa, Marcos A. M. A1 - Siqueira, Jose R. Jr. A1 - Vercik, Andres A1 - Schöning, Michael Josef A1 - Oliveira, Osvaldo N. Jr. T1 - Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors JF - IEEE Sensors Journal N2 - The capacitive electrolyte–insulator–semiconductor (EIS) structure is a typical device based on a field-effect sensor platform. With a simple silicon-based structure, EIS have been useful for several sensing applications, especially with incorporation of nanostructured films to modulate the ionic transport and the flat-band potential. In this paper, we report on ion transport and changes in flat-band potential in EIS sensors made with layer-by-layer films containing poly(amidoamine) (PAMAM) dendrimer and single-walled carbon nanotubes (SWNTs) adsorbed on p-Si/SiO 2 /Ta 2 O 5 chips with an Al ohmic contact. The impedance spectra were fitted using an equivalent circuit model, from which we could determine parameters such as the double-layer capacitance. This capacitance decreased with the number of bilayers owing to space charge accumulated at the electrolyte–insulator interface, up to three PAMAM/SWNTs bilayers, after which it stabilized. The charge-transfer resistance was also minimum for three bilayers, thus indicating that this is the ideal architecture for an optimized EIS performance. The understanding of the influence of nanostructures and the fine control of operation parameters pave the way for optimizing the design and performance of new EIS sensors. Y1 - 2017 U6 - https://doi.org/10.1109/JSEN.2017.2653238 SN - 1558-1748 VL - 17 IS - 6 SP - 1735 EP - 1740 PB - IEEE CY - New York ER - TY - JOUR A1 - Arreola, Julio A1 - Oberländer, Jan A1 - Mätzkow, M. A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Surface functionalization for spore-based biosensors with organosilanes JF - Electrochimica Acta N2 - In the present work, surface functionalization of different sensor materials was studied. Organosilanes are well known to serve as coupling agent for biomolecules or cells on inorganic materials. 3-aminopropyltriethoxysilane (APTES) was used to attach microbiological spores time to an interdigitated sensor surface. The functionality and physical properties of APTES were studied on isolated sensor materials, namely silicon dioxide (SiO2) and platinum (Pt) as well as the combined material on sensor level. A predominant immobilization of spores could be demonstrated on SiO2 surfaces. Additionally, the impedance signal of APTES-functionalized biosensor chips has been investigated. Y1 - 2017 U6 - https://doi.org/10.1016/j.electacta.2017.04.157 SN - 0013-4686 VL - 241 SP - 237 EP - 243 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Liu, Z. A1 - Schaap, K. S. A1 - Ballemans, L. A1 - de Blois, E. A1 - Rohde, M. A1 - Paulßen, Elisabeth T1 - Measurement of reaction kinetics of [177Lu]Lu-DOTA-TATE using a microfluidic system JF - Dalton Transactions Y1 - 2017 U6 - https://doi.org/10.1039/C7DT01830D SN - 1477-9234 VL - 46 IS - 42 SP - 14669 EP - 14676 ER - TY - JOUR A1 - Kilic, S. A. A1 - Raatschen, Hans-Jürgen A1 - Körfgen, B. A1 - Apaydin, N. M. A1 - Astaneh-Asl, A. T1 - FE Model of the Fatih Sultan Mehmet Suspension Bridge Using Thin Shell Finite Elements JF - Arabian Journal for Science and Engineering N2 - This paper presents the results of an eigenvalue analysis of the Fatih Sultan Mehmet Bridge. A high-resolution finite element model was created directly from the available design documents. All physical properties of the structural components were included in detail, so no calibration to the measured data was necessary. The deck and towers were modeled with shell elements. A nonlinear static analysis was performed before the eigenvalue calculation. The calculated natural frequencies and corresponding mode shapes showed good agreement with the available measured ambient vibration data. The calculation of the effective modal mass showed that nine modes had single contributions higher than 5 % of the total mass. They were in a frequency range up to 1.2 Hz. The comparison of the results for the torsional modes especially demonstrated the advantage of using thin shell finite elements over the beam modeling approach. KW - Suspension bridge KW - 3D nonlinear finite element model KW - Thin shell finite elements KW - Natural frequency KW - Effective modal mass Y1 - 2017 U6 - https://doi.org/10.1007/s13369-016-2316-y SN - 2191-4281 VL - 42 IS - 3 SP - 1103 EP - 1116 PB - Springer Nature ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors JF - Electrochimica Acta N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric sensor with an electrolyte/insulator/semiconductor (EIS) structure, which is able to monitor analyte concentrations of (bio-)chemical species in aqueous solutions in a spatially resolved way. Therefore, it is also an appropriate tool to record 2D-chemical images of concentration variations on the sensor surface. In the present work, two differential, LAPS-based measurement principles are introduced to determine the metabolic activity of Escherichia coli (E. coli) K12 and Chinese hamster ovary (CHO) cells as test microorganisms. Hereby, we focus on i) the determination of the extracellular acidification rate (ΔpH/min) after adding glucose solutions to the cell suspensions; and ii) recording the amplitude increase of the photocurrent (Iph) related to the produced acids from E. coli K12 bacteria and CHO cells on the sensor surface by 2D-chemical imaging. For this purpose, 3D-printed multi-chamber structures were developed and mounted on the planar sensor-chip surface to define four independent compartments, enabling differential measurements with varying cell concentrations. The differential concept allows eliminating unwanted drift effects and, with the four-chamber structures, measurements on the different cell concentrations were performed simultaneously, thus reducing also the overall measuring time. Y1 - 2017 U6 - https://doi.org/10.1016/j.electacta.2017.05.196 SN - 0013-4686 VL - 246 SP - 234 EP - 241 PB - Elsevier CY - Amsterdam ER -