TY - CHAP A1 - Özdil, S. A1 - Berndt, Heinz A1 - Höcker, Hartwig T1 - Systematische Erfassung der Beständigkeit von Ryton-, P84- und Dralon ATF 1063-Fasern unter Einwirkung verschiedener NOx-Konzentrationen in einem definierten Temperaturintervall T2 - Schriftenreihe des Deutschen Wollforschungsinstitutes an der Technischen Hochschule Aachen e.V. Y1 - 1991 SN - 0930-3723 IS - 107 SP - 89 EP - 129 PB - Dt. Wollforschungsinstitut CY - Aachen ER - TY - CHAP A1 - Medlin, L. K. A1 - Barker, G. L. A. A1 - Baumann, Marcus A1 - Hayes, P. K. T1 - Molecular biology and systematics T2 - The Haptophyte Algae (Special volume / Systematics Association : 51) Y1 - 1994 SN - 0-19-857772-9 SP - 393 EP - 411 PB - Clarendon Press CY - Oxford ER - TY - CHAP A1 - Wendorff, Marion A1 - Eggert, Thorsten A1 - Pohl, Martina A1 - Dresen, Carola A1 - Müller, Michael A1 - Jaeger, Karl-Erich A1 - Sprenger, Georg A. A1 - Schürmann, Melanie A1 - Schürmann, Martin A1 - Johnen, Sandra A1 - Sprenger, Gerda A1 - Sahm, Hermann A1 - Inoue, Tomoyuki A1 - Schörken, Ulrich A1 - Breittaupt, Holger A1 - Frölich, Bettina A1 - Heim, Petra A1 - Iding, Hans A1 - Juchem, Bettina A1 - Siegert, Petra A1 - Kula, Maria-Regina A1 - Weckbecker, Andrea A1 - Hummel, Werner A1 - Fessner, Wolf-Dieter A1 - Elling, Lothar A1 - Wolberg, Michael A1 - Bode, Silke A1 - Feldmann, Ralf A1 - Geilenkirchen, Petra A1 - Schubert, Thomas A1 - Walter, Lydia A1 - Dünnwald, Thomas A1 - Demir, Ayhan S. A1 - Kolter-Jung, Doris A1 - Nitsche, Adam A1 - Dünkelmann, Pascal A1 - Cosp, Annabel A1 - Lingen, Bettina T1 - Catalytic asymmetric synthesis : section 2.2 T2 - Asymmetric synthesis with chemical and biological methods / ed. by Dieter Enders ... Y1 - 2007 SN - 978-3-527-31473-7 SP - 298 EP - 413 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Siegert, Petra A1 - Pohl, Martina A1 - Kneen, Malea M. A1 - Pogozheva, Irina D. A1 - Kenyon, George L. A1 - McLeish, Michael J. T1 - Exploring the substrate specificity of benzoylformate decarboxylase, pyruvate decarboxylase, and benzaldehyde lyase T2 - Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ... Y1 - 2004 SN - 0-8247-4062-9 SP - 275 EP - 290 PB - Dekker CY - New York, NY ER - TY - CHAP A1 - Srivastava, Alok A1 - Knolle, Friedhart A1 - Hoyler, Friedrich A1 - Scherer, Ulrich W. A1 - Schnug, Ewald T1 - Uranium Toxicity in the State of Punjab in North-Western India T2 - Management of Natural Resources in a Changing Environment N2 - Lately there has been an increasing concern about uranium toxicity in some districts of Punjab State located in the North Western part of India after the publication of a report (Blaurock-Busch et al. 2010) which showed that the concentration of uranium in hair and urine of children suffering from physical deformities, neurological and mental disorder from Malwa region (Fig. 1) of Punjab State was manifold higher than the reference ranges. A train which connects the affected region with the nearby city of Bikaner which has a Cancer Hospital has been nicknamed as Cancer Express due to the frenzy generated on account of uranium related toxicity. Y1 - 2015 SN - 978-3-319-12559-6 U6 - https://doi.org/10.1007/978-3-319-12559-6_21 SP - 271 EP - 275 PB - Springer CY - Cham ER - TY - CHAP A1 - Frotscher, Ralf A1 - Goßmann, Matthias A1 - Raatschen, Hans-Jürgen A1 - Temiz Artmann, Aysegül A1 - Staat, Manfred T1 - Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM T2 - Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45) N2 - We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments. Y1 - 2015 SN - 978-3-319-02534-6 ; 978-3-319-02535-3 SP - 187 EP - 212 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Seibler, Jost A1 - Schwenk, Frieder T1 - Transgenic RNAi Applications in the Mouse T2 - Methods in Enzymology : Guide to Techniques in Mouse Development, Part B: Mouse Molecular Genetics. 2nd Edition Y1 - 2010 SN - 978-0-12-384880-2 N1 - Methods in Enzymology : Vol. 477 SP - 367 EP - 386 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Artmann, Gerhard A1 - Meruvu, Haritha A1 - Kizildag, Sefa A1 - Temiz Artmann, Aysegül ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative “CellDrum technology” was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology. Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_7 SP - 157 EP - 192 PB - Springer CY - Singapore ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - CHAP A1 - Wagemann, Kurt A1 - Tippkötter, Nils T1 - Biorefineries: a short introduction T2 - Biorefineries N2 - The terms bioeconomy and biorefineries are used for a variety of processes and developments. This short introduction is intended to provide a delimitation and clarification of the terminology as well as a classification of current biorefinery concepts. The basic process diagrams of the most important biorefinery types are shown. KW - Bioeconomy KW - Biorefinery definitions KW - Introduction KW - Process schemes KW - Renewable resources Y1 - 2018 SN - 978-3-319-97117-9 SN - 978-3-319-97119-3 U6 - https://doi.org/10.1007/10_2017_4 N1 - (Advances in Biochemical Engineering/Biotechnology book series ; Vol. 166) SP - 1 EP - 11 PB - Springer CY - Cham ER -