TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 SP - 1 EP - 13 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft T2 - AIAA Scitech 2020 Forum N2 - As battery technologies advance, electric propulsion concepts are on the edge of disrupting aviation markets. However, until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial-hybrid-, parallel-hybrid-, fully-electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This paper provides insight into some factors that drive a new design towards either conventional or hybrid propulsion systems. General aviation aircraft, VTOL air taxis, transport aircraft, and UAVs are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their take-off mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints (e.g. take-off, climb). However, if the propulsion system is sized by a continuous power requirement (e.g. cruise), hybrid-electric systems offer hardly any benefit. Y1 - 2020 U6 - https://doi.org/10.2514/6.2020-1502 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Finger, Felix A1 - de Vries, Reynard A1 - Vos, Roelof A1 - Braun, Carsten A1 - Bil, Cees T1 - A comparison of hybrid-electric aircraft sizing methods T2 - AIAA Scitech 2020 Forum N2 - The number of case studies focusing on hybrid-electric aircraft is steadily increasing, since these configurations are thought to lead to lower operating costs and environmental impact than traditional aircraft. However, due to the lack of reference data of actual hybrid-electric aircraft, in most cases, the design tools and results are difficult to validate. In this paper, two independently developed approaches for hybrid-electric conceptual aircraft design are compared. An existing 19-seat commuter aircraft is selected as the conventional baseline, and both design tools are used to size that aircraft. The aircraft is then re-sized under consideration of hybrid-electric propulsion technology. This is performed for parallel, serial, and fully-electric powertrain architectures. Finally, sensitivity studies are conducted to assess the validity of the basic assumptions and approaches regarding the design of hybrid-electric aircraft. Both methods are found to predict the maximum take-off mass (MTOM) of the reference aircraft with less than 4% error. The MTOM and payload-range energy efficiency of various (hybrid-) electric configurations are predicted with a maximum difference of approximately 2% and 5%, respectively. The results of this study confirm a correct formulation and implementation of the two design methods, and the data obtained can be used by researchers to benchmark and validate their design tools. Y1 - 2020 U6 - https://doi.org/10.2514/6.2020-1006 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Striegan, Constantin J. D. A1 - Struth, Benjamin A1 - Dickhoff, Jens A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Bohn, Dieter T1 - Numerical Simulations of the Micromix DLN Hydrogen Combustion Technology with LES and Comparison to Results of RANS and Experimental Data T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan. Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGCT-2019-147 SP - 1 EP - 9 ER - TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - CHAP A1 - Quitter, Julius A1 - Marino, Matthew A1 - Bauschat, J.-Michael T1 - Highly Non-Planar Aircraft Configurations: Estimation of Flight Mechanical Derivatives Using Low-Order Methods T2 - Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany Y1 - 2019 ER - TY - JOUR A1 - Khayyam, Hamid A1 - Jamali, Ali A1 - Bab-Hadiashar, Alireza A1 - Esch, Thomas A1 - Ramakrishna, Seeram A1 - Jalil, Mahdi A1 - Naebe, Minoo T1 - A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0 JF - IEEE Access N2 - To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements. Y1 - 2020 SN - 2169-3536 U6 - https://doi.org/10.1109/ACCESS.2020.2999898 SP - 1 EP - 12 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Hailer, Benjamin A1 - Weber, Tobias A1 - Neveling, Sebastian A1 - Dera, Samuel A1 - Arent, Jan-Christoph A1 - Middendorf, Peter T1 - Development of a test device to determine the frictional behavior between honeycomb and prepreg layers under realistic manufacturing conditions JF - Journal of Sandwich Structures & Materials N2 - In the friction tests between honeycomb with film adhesive and prepreg, the relative displacement occurs between the film adhesive and the prepreg. The film adhesive does not shift relative to the honeycomb. This is consistent with the core crush behavior where the honeycomb moves together with the film adhesive, as can be seen in Figure 2(a). The pull-through forces of the friction measurements between honeycomb and prepreg at 1 mm deformation are plotted in Figure 17(a). While the friction at 100°C is similar to the friction at 120°C, it decreases significantly at 130°C and exhibits a minimum at 140°C. At 150°C, the friction rises again slightly and then sharply at 160°C. Since the viscosity of the M18/1 prepreg resin drops significantly before it cures [23], the minimum friction at 140°C could result from a minimum viscosity of the mixture of prepreg resin and film adhesive before the bond subsequently cures. Figure 17(b) shows the mean value curve of the friction measurements at 140°C. The error bars, which represent the standard deviation, reveal the good repeatability of the tests. The force curve is approximately horizontal between 1 mm and 2 mm. The friction then slightly rises. As with interlaminar friction measurements, this could be due to the fact that resin is removed by friction and the proportion of boundary lubrication increases. Figure 18 shows the surfaces after the friction measurement. The honeycomb cell walls are clearly visible in the film adhesive. There are areas where the film adhesive is completely removed and the carrier material of the film adhesive becomes visible. In addition, the viscosity of the resin changes as the curing progresses during the friction test. This can also affect the force-displacement curve. Y1 - 2020 U6 - https://doi.org/10.1177/1099636220923986 SN - 1530-7972 IS - Volume 23, Issue 7 SP - 3017 EP - 3043 PB - Sage CY - London ER - TY - CHAP A1 - Englhard, Markus A1 - Weber, Tobias A1 - Arent, Jan-Christoph T1 - Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization T2 - Proceedings of SAMPE Europe Conference 2021 N2 - A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31% using the proposed methodology. Y1 - 2021 N1 - SAMPE Europe Conference 2021, Baden/Zürich, Schweiz, 29. bis 30. September 2021 ER - TY - JOUR A1 - Peloni, Alessandro A1 - Ceriotti, Matteo A1 - Dachwald, Bernd T1 - Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission JF - Journal of Guidance, Control, and Dynamics N2 - The scientific interest for near-Earth asteroids as well as the interest in potentially hazardous asteroids from the perspective of planetary defense led the space community to focus on near-Earth asteroid mission studies. A multiple near-Earth asteroid rendezvous mission with close-up observations of several objects can help to improve the characterization of these asteroids. This work explores the design of a solar-sail spacecraft for such a mission, focusing on the search of possible sequences of encounters and the trajectory optimization. This is done in two sequential steps: a sequence search by means of a simplified trajectory model and a set of heuristic rules based on astrodynamics, and a subsequent optimization phase. A shape-based approach for solar sailing has been developed and is used for the first phase. The effectiveness of the proposed approach is demonstrated through a fully optimized multiple near-Earth asteroid rendezvous mission. The results show that it is possible to visit five near-Earth asteroids within 10 years with near-term solar-sail technology. Y1 - 2016 U6 - https://doi.org/10.2514/1.G000470 SN - 0731-5090 VL - 39 IS - 12 SP - 2712 EP - 2724 PB - AIAA CY - Reston, Va. ER -