TY - CHAP A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz A1 - Seboldt, Wolfgang A1 - Dachwald, Bernd A1 - Streppel, Joern A1 - Meusemann, Hans A1 - Schülke, Peter T1 - SEP for a lander mission to the jovian moon europa T2 - 57th International Astronautical Congress N2 - Under DLR-contract, Giessen University and DLR Cologne are studying solar-electric propulsion missions (SEP) to the outer regions of the solar system. The most challenging reference mission concerns the transport of a 1.35-tons chemical lander spacecraft into an 80-RJ circular orbit around Jupiter, which would enable to place a 375 kg lander with 50 kg of scientific instruments on the surface of the icy moon "Europa". Thorough analyses show that the best solution in terms of SEP launch mass times thrusting time would be a two-stage EP module and a triple-junction solar array with concentrators which would be deployed step by step. Mission performance optimizations suggest to propel the spacecraft in the first EP stage by 6 gridded ion thrusters, running at 4.0 kV of beam voltage, which would save launch mass, and in the second stage by 4 thrusters with 1.25 to 1.5 kV of positive high voltage saving thrusting time. In this way, the launch mass of the spacecraft would be kept within 5.3 tons. Without a launcher's C3 and interplanetary gravity assists, Jupiter might be reached within about 4 yrs. The spiraling-down into the parking orbit would need another 1.8 yrs. This "large mission" can be scaled down to a smaller one, e.g., by halving all masses, the solar array power, and the number of thrusters. Due to their reliability, long lifetime and easy control, RIT-22 engines have been chosen for mission analysis. Based on precise tests, the thruster performance has been modeled. Y1 - 2006 U6 - https://doi.org/10.2514/6.IAC-06-C4.4.04 N1 - 57th International Astronautical Congress, 02 October 2006 - 06 October 2006, Valencia, Spain. SP - 1 EP - 12 ER - TY - JOUR A1 - Turaliyeva, M. A1 - Yeshibaev, A. A1 - Saparbekova, A. A1 - Akynova, L. A1 - Abildayeva, R. A1 - Sadenova, M. A1 - Sartayeva, K. A1 - Schieffer, Andre A1 - Digel, Ilya T1 - Species composition and injuriousness of stranger xylophilous fauna affecting indigenous urban dendroflora of Central Asia JF - Asian journal of microbiology, biotechnology & environmental sciences : AJMBES N2 - At the present time, one of the most serious environmental problems of Central Asia and South Kazakhstan is the ongoing large-scale deterioration of principal urban tree populations. Several major centers of massive spread of invasive plant pests have been found in urban dendroflora of this region. The degree of damage of seven most wide-spread aboriginal tree species was found to range from 21.4±1.1 to 85.4±1.8%. In particular, the integrity of the native communities of sycamore (Platanus spp.), willow (Salix spp.), poplar (Populus spp.) and elm (Ulmus spp.) is highly endangered. Our taxonomic analysis of the most dangerous tree pests of the region has revealed them as neobiontic xylophilous insects such as Cossus cossus L. (Order: Lepidoptera L.) Monochamus urussovi Fisch., Monochamus sutor L., Acanthocinus aedelis L. and Ñetonia aureate L. (Order: Coleoptera L.). We relate the origin of this threatening trend with the import of industrial wood in the mid 90’s of the last century that was associated with high degree of the constructional work in the region. Because of the absence of efficient natural predators of the pest species, the application of microbiological methods of the pest control and limitation is suggested. Y1 - 2016 SN - 0972-3005 VL - 18 IS - 2 SP - 359 EP - 366 PB - EM International ER - TY - CHAP A1 - Valero, Daniel A1 - Vogel, Jochen A1 - Schmidt, Daniel A1 - Bung, Daniel Bernhard T1 - Three-dimensional flow structure inside the cavity of a non-aerated stepped chute T2 - 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May Y1 - 2018 SN - 978-0-692-13277-7 U6 - https://doi.org/10.15142/T3GH17 ER - TY - CHAP A1 - Anthrakidis, Anette A1 - Rusack, Markus A1 - Schwarzer, Klemens T1 - Low effort measurement method of PTC-efficiency T2 - SolarPACES 2010 : the CSP conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France Y1 - 2010 SP - 48 EP - 49 PB - Soc. OSC CY - Saint Maur ER - TY - JOUR A1 - Tippkötter, Nils A1 - Roth, Jasmine T1 - Purified Butanol from Lignocellulose – Solvent‐Impregnated Resins for an Integrated Selective Removal JF - Chemie Ingenieur Technik N2 - In traditional microbial biobutanol production, the solvent must be recovered during fermentation process for a sufficient space-time yield. Thermal separation is not feasible due to the boiling point of n-butanol. As an integrated and selective solid-liquid separation alternative, solvent impregnated resins (SIRs) were applied. Two polymeric resins were evaluated and an extractant screening was conducted. Vacuum application with vapor collection in fixed-bed column as bioreactor bypass was successfully implemented as butanol desorption step. In course of further increasing process economics, fermentation with renewable lignocellulosic substrates was conducted using Clostridium acetobutylicum. Utilization of SIR was shown to be a potential strategy for solvent removal from fermentation broth, while application of a bypass column allows for product removal and recovery at once. KW - Biofuel KW - Biorefinery KW - Butanol KW - Clostridium acetobutylicum KW - Lignocellulose Y1 - 2020 U6 - https://doi.org/10.1002/cite.202000200 SN - 1522-2640 N1 - Corresponding author: Nils Tippkötter VL - 92 IS - 11 SP - 1741 EP - 1751 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Dey, Thomas A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Frauenrath, Tobias A1 - Reke, Michael A1 - Schiffer, Stefan ED - Makedon, Fillia T1 - CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom T2 - PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference N2 - In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway. KW - embedded hardware KW - sensor networks KW - information systems KW - education KW - do-it-yourself Y1 - 2021 SN - 9781450387927 U6 - https://doi.org/10.1145/3453892.3462697 N1 - PETRA '21: The 14th PErvasive Technologies Related to Assistive Environments Conference Corfu Greece 29 June 2021- 2 July 2021 SP - 292 EP - 299 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - German, Laura A1 - Mikucki, Jill A. A1 - Welch, Susan A. A1 - Welch, Kathleen A. A1 - Lutton, Anthony A1 - Dachwald, Bernd A1 - Kowalski, Julia A1 - Heinen, Dirk A1 - Feldmann, Marco A1 - Francke, Gero A1 - Espe, Clemens A1 - Lyons, W. Berry T1 - Validation of sampling antarctic subglacial hypersaline waters with an electrothermal ice melting probe (IceMole) for environmental analytical geochemistry JF - International Journal of Environmental Analytical Chemistry N2 - Geochemical characterisation of hypersaline waters is difficult as high concentrations of salts hinder the analysis of constituents at low concentrations, such as trace metals, and the collection of samples for trace metal analysis in natural waters can be easily contaminated. This is particularly the case if samples are collected by non-conventional techniques such as those required for aquatic subglacial environments. In this paper we present the first analysis of a subglacial brine from Taylor Valley, (~ 78°S), Antarctica for the trace metals: Ba, Co, Mo, Rb, Sr, V, and U. Samples were collected englacially using an electrothermal melting probe called the IceMole. This probe uses differential heating of a copper head as well as the probe’s sidewalls and an ice screw at the melting head to move through glacier ice. Detailed blanks, meltwater, and subglacial brine samples were collected to evaluate the impact of the IceMole and the borehole pump, the melting and collection process, filtration, and storage on the geochemistry of the samples collected by this device. Comparisons between melt water profiles through the glacier ice and blank analysis, with published studies on ice geochemistry, suggest the potential for minor contributions of some species Rb, As, Co, Mn, Ni, NH4+, and NO2−+NO3− from the IceMole. The ability to conduct detailed chemical analyses of subglacial fluids collected with melting probes is critical for the future exploration of the hundreds of deep subglacial lakes in Antarctica. Y1 - 2021 U6 - https://doi.org/10.1080/03067319.2019.1704750 SN - 0306-7319 VL - 101 IS - 15 SP - 2654 EP - 2667 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Gehler, M. A1 - Ober-Blöbaum, S. A1 - Dachwald, Bernd T1 - Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies T2 - Procceedings of the 60th International Astronautical Congress N2 - Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments. KW - Spacecraft Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 SP - 1360 EP - 1371 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - Solar sailcraft of the first generation technology development / Seboldt, Wolfgang ; Dachwald, Bernd Y1 - 2003 N1 - 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law 29 September - 3 October 2003, Bremen, Germany IAC-03-S.03 ER - TY - CHAP A1 - Chajan, Eduard A1 - Schulte-Tigges, Joschua A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Matheis, Dominik A1 - Walter, Thomas T1 - GPU based model-predictive path control for self-driving vehicles T2 - IEEE Intelligent Vehicles Symposium (IV) N2 - One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments. KW - Heuristic algorithms KW - Computational modeling KW - model-predictive control KW - GPU KW - autonomous driving Y1 - 2021 SN - 978-1-7281-5394-0 U6 - https://doi.org/10.1109/IV48863.2021.9575619 N1 - 2021 IEEE Intelligent Vehicles Symposium (IV), July 11-17, 2021. Nagoya, Japan SP - 1243 EP - 1248 PB - IEEE CY - New York, NY ER -