TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Horikawa, Atsushi T1 - 30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 4B: Combustion, Fuels, and Emissions N2 - The paper presents an overview of the past and present of low-emission combustor research with hydrogen-rich fuels at Aachen University of Applied Sciences. In 1990, AcUAS started developing the Dry-Low-NOx Micromix combustion technology. Micromix reduces NOx emissions using jet-in-crossflow mixing of multiple miniaturized fuel jets and combustor air with an inherent safety against flashback. At first, pure hydrogen as fuel was investigated with lab-scale applications. Later, Micromix prototypes were developed for the use in an industrial gas turbine Honeywell/Garrett GTCP-36-300, proving low NOx characteristics during real gas turbine operation, accompanied by the successful definition of safety laws and control system modifications. Further, the Micromix was optimized for the use in annular and can combustors as well as for fuel-flexibility with hydrogen-methane-mixtures and hydrogen-rich syngas qualities by means of extensive experimental and numerical simulations. In 2020, the latest Micromix application will be demonstrated in a commercial 2 MW-class gas turbine can-combustor with full-scale engine operation. The paper discusses the advances in Micromix research over the last three decades. KW - Micromix KW - Hydrogen KW - Fuel-flexibility KW - NOx KW - Emissions Y1 - 2021 SN - 978-0-7918-8413-3 U6 - https://doi.org/10.1115/GT2020-16328 N1 - ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition September 21–25, 2020, Virtual, Online N1 - Paper No. GT2020-16328, V04BT04A069 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Analysis of the static and dynamic aero-structural response of an elastic swept wing model by direct aeroelastic simulation T2 - ICAS 2006 proceedings : 25th Congress of the International Council of the Aeronautical Sciences ; Hamburg, Germany, 3 - 8 September, 2006 : 25th International Congress of Aeronautical Sciences Y1 - 2006 SN - 0-9533991-7-6 SP - Paper No. 2006-10.3.3 PB - Optimage CY - Edinburgh ER - TY - JOUR A1 - Peloni, Alessandro A1 - Dachwald, Bernd A1 - Ceriotti, Matteo T1 - Multiple near-earth asteroid rendezvous mission: Solar-sailing options JF - Advances in Space Research Y1 - 2017 U6 - https://doi.org/10.1016/j.asr.2017.10.017 SN - 0273-1177 IS - In Press, Corrected Proof PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Loeb, Horst Wolfgang A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - SEP-Sample return from a main belt asteroid T2 - 30th International Electric Propulsion Conference N2 - By DLR-contact, sample return missions to the large main-belt asteroid “19, Fortuna” have been studied. The mission scenario has been based on three ion thrusters of the RIT-22 model, which is presently under space qualification, and on solar arrays equipped with triple-junction GaAs solar cells. After having designed the spacecraft, the orbit-to-orbit trajectories for both, a one-way SEP mission with a chemical sample return and an all-SEP return mission, have been optimized using a combination of artificial neural networks with evolutionary algorithms. Additionally, body-to-body trajectories have been investigated within a launch period between 2012 and 2015. For orbit-to-orbit calculation, the launch masses of the hybrid mission and of the all-SEP mission resulted in 2.05 tons and 1.56 tons, respectively, including a scientific payload of 246 kg. For the related transfer durations 4.14 yrs and 4.62 yrs were obtained. Finally, a comparison between the mission scenarios based on SEP and on NEP have been carried out favouring clearly SEP. Y1 - 2007 SP - 1 EP - 11 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Loeb, H. W. A1 - Schartner, Karl-Heinz T1 - Main Belt Asteroid Sample Return Mission Using Solar Electric Propulsion JF - Acta Astronautica. 63 (2008), H. 1-4 Y1 - 2008 SN - 0094-5765 N1 - International Astronautical Federation Congress <58, 2007, Hyderabad> ; International Astronautical Congress <58, 2007, Hyderabad> ; IAC-07-A3.5.07 SP - 91 EP - 101 ER - TY - JOUR A1 - Kezerashvili, Roman Ya A1 - Dachwald, Bernd T1 - Preface: Solar sailing: Concepts, technology, and missions II JF - Advances in Space Research Y1 - 2021 U6 - https://doi.org/10.1016/j.asr.2021.01.037 SN - 0273-1177 VL - 67 IS - 9 SP - 2559 EP - 2560 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Spurmann, J. A1 - Loeb, H. W. A1 - Schartner, Karl-Heinz A1 - Seboldt, Wolfgang T1 - Mission design for a SEP mission to saturn T2 - 60th International Astronautical Congress 2009 (IAC 2009) N2 - Within ESA's Cosmic Vision 2015-2025 plan, a mission to explore the Saturnian System, with special emphasis on its two moons Titan and Enceladus, was selected for study, termed TANDEM (Titan and Enceladus Mission). In this paper, we describe an optimized mission design for a TANDEM-derived solar electric propulsion (SEP) mission. We have chosen the SEP mission scenario for the interplanetary transfer of the TANDEM spacecraft because all feasible gravity assist sequences for a chemical transfer between 2015 and 2025 result in long flight times of about nine years. Our SEP system is based on the German RIT ion engine. For our optimized mission design, we have extensively explored the SEP parameter space (specific impulse, thrust level, power level) and have calculated an optimal interplanetary trajectory for each setting. In contrast to the original TANDEM mission concept, which intends to use two launch vehicles and an all-chemical transfer, our SEP mission design requires only a single Ariane 5 ECA launch for the same payload mass. Without gravity assist, it yields a faster and more flexible transfer with a fight time of less than seven years, and an increased payload ratio. Our mission design proves thereby the capability of SEP even for missions into the outer solar system. Y1 - 2009 SN - 978-1-61567-908-9 N1 - 12-16 October 2009, Daejeon, Republic of Korea. PB - Curran Associates, Inc. CY - Red Hook, NY ER - TY - GEN A1 - Machado, Patricia Almeida A1 - Dahmann, Peter A1 - Keimer, Jona A1 - Saretzki, Charlotte A1 - Stübing, Felix A1 - Küpper, Thomas T1 - Stress profile and individual workload monitoring in general aviation pilots – an experiment’s setting T2 - 23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020 Y1 - 2020 U6 - https://doi.org/10.55225/hppa.156 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Ohndorf, A. A1 - Seboldt, Wolfgang T1 - Optimierung der Lageregelung von Raumfahrzeugen mit Niedrigschubantrieb mittels evolutionärer neuronaler Regler / A. Ohndorf ; B. Dachwald ; W. Seboldt JF - Deutscher Luft- und Raumfahrtkongress 2005 : Friedrichshafen, 26. bis 29. September 2005, Motto: Luft- und Raumfahrt - Grenzen überwinden, Horizonte erweitern / Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V. (DGLR). [Red.: Peter Brandt (verantwortlich)]. Bd. 3. - (Jahrbuch ... der Deutschen Gesellschaft für Luft- und Raumfahrt Y1 - 2005 N1 - Deutscher Luft- und Raumfahrt-Kongress <2005, Friedrichshafen> ; Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth ; Dokumentnr: DGLR-2005-224 SP - 1971 EP - 1978 PB - DGLR CY - Bonn ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1 T2 - Proceedings of the Eleventh Asia‐Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017 Y1 - 2017 SN - 978-1-5108-5646-2 SP - 262 EP - 265 ER -