TY - JOUR A1 - Maurischat, Andreas T1 - Algebraic independence of the Carlitz period and its hyperderivatives KW - Drinfeld modules KW - t-modules KW - Transcendence KW - Hyperdifferentials Y1 - 2021 N1 - Zweitveröffentlichung. Verlagsveröffentlichung: https://doi.org/10.1016/j.jnt.2022.01.006 SP - 1 EP - 12 ER - TY - JOUR A1 - Bohndick, Carla A1 - Bosse, Elke A1 - Jänsch, Vanessa K. A1 - Barnat, Miriam T1 - How different diversity factors affect the perception of first-year requirements in higher education JF - Frontline Learning Research N2 - In the light of growing university entry rates, higher education institutions not only serve larger numbers of students, but also seek to meet first-year students’ ever more diverse needs. Yet to inform universities how to support the transition to higher education, research only offers limited insights. Current studies tend to either focus on the individual factors that affect student success or they highlight students’ social background and their educational biography in order to examine the achievement of selected, non-traditional groups of students. Both lines of research appear to lack integration and often fail to take organisational diversity into account, such as different types of higher education institutions or degree programmes. For a more comprehensive understanding of student diversity, the present study includes individual, social and organisational factors. To gain insights into their role for the transition to higher education, we examine how the different factors affect the students’ perception of the formal and informal requirements of the first year as more or less difficult to cope with. As the perceived requirements result from both the characteristics of the students and the institutional context, they allow to investigate transition at the interface of the micro and the meso level of higher education. Latent profile analyses revealed that there are no profiles with complex patterns of perception of the first-year requirements, but the identified groups rather differ in the overall level of perceived challenges. Moreover, SEM indicates that the differences in the perception largely depend on the individual factors self-efficacy and volition. Y1 - 2021 U6 - https://doi.org/10.14786/flr.v9i2.667 SN - 2295-3159 VL - 9 IS - 2 SP - 78 EP - 95 PB - EARLI ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach JF - SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021 Y1 - 2021 U6 - https://doi.org/10.2514/6.2021-1535 SP - 1 EP - 12 PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Ayed, Anis Haj A1 - Striegan, Constantin J. D. A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Kazari, M. A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Automated design space exploration of the hydrogen fueled "Micromix" combustor technology N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Y1 - 2017 N1 - Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017, Jan 16-18, 2017, Zurich, Switzerland SP - 1 EP - 8 ER - TY - JOUR A1 - Ayed, Anis Haj A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Keinz, Jan A1 - Bohn, D. T1 - CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities JF - Propulsion and Power Research KW - Micromix combustion KW - Hydrogen gas turbine KW - Hydrogen combustion KW - High hydrogen combustion KW - Dry-low-NOx (DLN) combustion Y1 - 2017 SN - 2212-540X U6 - https://doi.org/10.1016/j.jppr.2017.01.005 VL - 6 IS - 1 SP - 15 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Horikawa, Atsushi T1 - 30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 4B: Combustion, Fuels, and Emissions N2 - The paper presents an overview of the past and present of low-emission combustor research with hydrogen-rich fuels at Aachen University of Applied Sciences. In 1990, AcUAS started developing the Dry-Low-NOx Micromix combustion technology. Micromix reduces NOx emissions using jet-in-crossflow mixing of multiple miniaturized fuel jets and combustor air with an inherent safety against flashback. At first, pure hydrogen as fuel was investigated with lab-scale applications. Later, Micromix prototypes were developed for the use in an industrial gas turbine Honeywell/Garrett GTCP-36-300, proving low NOx characteristics during real gas turbine operation, accompanied by the successful definition of safety laws and control system modifications. Further, the Micromix was optimized for the use in annular and can combustors as well as for fuel-flexibility with hydrogen-methane-mixtures and hydrogen-rich syngas qualities by means of extensive experimental and numerical simulations. In 2020, the latest Micromix application will be demonstrated in a commercial 2 MW-class gas turbine can-combustor with full-scale engine operation. The paper discusses the advances in Micromix research over the last three decades. KW - Micromix KW - Hydrogen KW - Fuel-flexibility KW - NOx KW - Emissions Y1 - 2021 SN - 978-0-7918-8413-3 U6 - https://doi.org/10.1115/GT2020-16328 N1 - ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition September 21–25, 2020, Virtual, Online N1 - Paper No. GT2020-16328, V04BT04A069 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Seboldt, Wolfgang A1 - Blome, Hans-Joachim A1 - Dachwald, Bernd A1 - Richter, Lutz T1 - Proposal for an integrated European space exploration strategy T2 - 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law N2 - Recently, in his vision for space exploration, US president Bush announced to extend human presence across the solar system, starting with a human return to the Moon as early as 2015 in preparation for human exploration of Mars and other destinations. In Europe, an exploration program, termed AURORA, was established by ESA in 2001 – funded on a voluntary basis by ESA member states – with a clear focus on Mars and the ultimate goal of landing humans on Mars around 2030 in international cooperation. In 2003, a Human Spaceflight Vision Group was appointed by ESA with the task to develop a vision for the role of human spaceflight during the next quarter of the century. The resulting vision focused on a European-led lunar exploration initiative as part of a multi-decade, international effort to strengthen European identity and economy. After a review of the situation in Europe concerning space exploration, the paper outlines an approach for a consistent positioning of exploration within the existing European space programs, identifies destinations, and develops corresponding scenarios for an integrated strategy, starting with robotic missions to the Moon, Mars, and near-Earth asteroids. The interests of the European planetary in-situ science community, which recently met at DLR Cologne, are considered. Potential robotic lunar missions comprise polar landings to search for frozen volatiles and a sample return. For Mars, the implementation of a modest robotic landing mission in 2009 to demonstrate the capability for landing and prepare more ambitious and complex missions is discussed. For near-Earth asteroid exploration, a low-cost in-situ technology demonstration mission could yield important results. All proposed scenarios offer excellent science and could therefore create synergies between ESA’s mandatory and optional programs in the area of planetary science and exploration. The paper intents to stimulate the European discussion on space exploration and reflects the personal view of the authors. Y1 - 2004 N1 - 55th International Astronautical Congress 2004 - Vancouver, Canada SP - 1 EP - 10 ER - TY - CHAP A1 - Hallmann, Marcus A1 - Heidecker, Ansgar A1 - Schlotterer, Markus A1 - Dachwald, Bernd T1 - GTOC8: results and methods of team 15 DLR T2 - 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA N2 - This paper describes the results and methods used during the 8th Global Trajectory Optimization Competition (GTOC) of the DLR team. Trajectory optimization is crucial for most of the space missions and usually can be formulated as a global optimization problem. A lot of research has been done to different type of mission problems. The most demanding ones are low thrust transfers with e.g. gravity assist sequences. In that case the optimal control problem is combined with an integer problem. In most of the GTOCs we apply a filtering of the problem based on domain knowledge. Y1 - 2016 N1 - 26th AAS/AIAA Space Flight Mechanics Meeting, February 14-18, 2016, Napa, California, U.S.A. Napa, CA ER - TY - CHAP A1 - Duprat, J. A1 - Dachwald, Bernd A1 - Hilchenbach, M. A1 - Engrand, Cecile A1 - Espe, C. A1 - Feldmann, M. A1 - Francke, G. A1 - Görög, Mark A1 - Lüsing, N. A1 - Langenhorst, Falko T1 - The MARVIN project: a micrometeorite harvester in Antarctic snow T2 - 44th Lunar and Planetary Science Conference N2 - MARVIN is an automated drilling and melting probe dedicated to collect pristine interplanetary dust particles (micrometeorites) from central Antarctica snow. Y1 - 2013 N1 - 44th Lunar and Planetary Science Conference, March 18-22, 2013, The Woodlands, Texas ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Hercik, D. A1 - Herique, A. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin R. A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettenmeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Responsive exploration and asteroid characterization through integrated solar sail and lander development using small spacecraft technologies T2 - IAA Planetary Defense Conference N2 - In parallel to the evolution of the Planetary Defense Conference, the exploration of small solar system bodies has advanced from fast fly-bys on the sidelines of missions to the planets to the implementation of dedicated sample-return and in-situ analysis missions. Spacecraft of all sizes have landed, touch-and-go sampled, been gently beached, or impacted at hypervelocity on asteroid and comet surfaces. More have flown by close enough to image their surfaces in detail or sample their immediate environment, often as part of an extended or re-purposed mission. And finally, full-scale planetary defense experiment missions are in the making. Highly efficient low-thrust propulsion is increasingly applied beyond commercial use also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another development in the same years is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities. The on-going NASA OSIRIS-REx and JAXA HAYABUSA2 missions exemplify the trend as well as the upcoming NEA SCOUT mission or the landers MINERVA-II and MASCOT recently deployed on Ryugu. We outline likely as well as possible and efficient routes of continuation of all these developments towards a propellant-less and highly efficient class of spacecraft for small solar system body exploration: small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules, for all asteroid user communities –planetary science, planetary defence, and in-situ resource utilization. This projection builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)² solar sail at DLR Cologne and in the 20 years since. It draws on the background of extensive trajectory optimization studies, the qualified technology of the DLR GOSSAMER-1 deployment demonstrator, and the MASCOT asteroid lander. These enable ‘now-term’ as well as near-term hardware solutions, and thus responsive fast-paced development. Mission types directly applicable to planetary defense include: single and Multiple NEA Rendezvous ((M)NR) for mitigation precursor, target monitoring and deflection follow-up tasks; sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation; and deployable membrane based methods to modify the asteroid’s properties or interact with it. The DLR-ESTEC GOSSAMER Roadmap initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery which demonstrate the capability of near-term solar sails to achieve NEA rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. For those mission types using separable payloads, such as SPO, (M)NR and RKI, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. These are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms. Y1 - 2019 N1 - Conference: IAA Planetary Defense ConferenceAt: Washington DC, USA 29.04-03.05.2019 ER -