TY - CHAP A1 - Krause, Thomas T1 - Schalung und Gerüste T2 - Übungsaufgaben und Berechnungen für den Baubetrieb N2 - Die grundsätzliche Planung von Schalungsaufgaben wird heute in der Regel im Rahmen der Arbeitsvorbereitung von den entsprechenden Stabsabteilungen oder als Serviceleistung von den Schalungsherstellern mit Anwendung von spezieller Software und den technischen Unterlagen für die jeweiligen Schalungsgeräte durchgeführt. Diese Programme und technischen Unterlagen stehen in der Regel auch den Mitarbeitern in der Bauleitung zur Verfügung, werden dort aber eher seltener genutzt. Zur Anwendung auf der Baustelle stellen die Schalungshersteller neben den technischen Unterlagen Bemessungstabellen zur Verfügung, welche die Auswahl und Dimensionierung einzelner Schalungen wesentlich erleichtern. Die nachfolgend aufgeführten Beispiele aus dem Bereich Schalung und Gerüste beschreiben Aufgaben, die im Baustellenbetrieb auf die Bauleitung zu kommen können und auch ohne Unterstützung einer Stabsabteilung gelöst werden können. Y1 - 2019 SN - 978-3-658-23127-9 (Online) SN - 978-3-658-23126-2 (Print) U6 - https://doi.org/10.1007/978-3-658-23127-9_9 SP - 241 EP - 253 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Martin, Joachim T1 - Betriebsorganisation T2 - Übungsaufgaben und Berechnungen für den Baubetrieb Y1 - 2019 SN - 978-3-658-23127-9 U6 - https://doi.org/10.1007/978-3-658-23127-9_10 SP - 255 EP - 272 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Streit, Wilfried T1 - Kalkulation T2 - Übungsaufgaben und Berechnungen für den Baubetrieb Y1 - 2019 SN - 978-3-658-23127-9 U6 - https://doi.org/10.1007/978-3-658-23127-9_11 SP - 273 EP - 334 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Lemke, Jörg T1 - Arbeitssicherheit T2 - Übungsaufgaben und Berechnungen für den Baubetrieb Y1 - 2019 SN - 978-3-658-23127-9 U6 - https://doi.org/10.1007/978-3-658-23127-9_12 SP - 335 EP - 344 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Diekmann, Julian A1 - Eggert, Mathias T1 - Is a Progressive Web App an Alternative for Native App Development? T2 - 3. Wissenschaftsforum: Digitale Transformation (WiFo21) (Lecture Notes in Informatics ; P-319) N2 - The existence of several mobile operating systems, such as Android and iOS, is a challenge for developers because the individual platforms are not compatible with each other and require separate app developments. For this reason, cross-platform approaches have become popular but lack in cloning the native behavior of the different operating systems. Out of the plenty cross-platform approaches, the progressive web app (PWA) approach is perceived as promising but needs further investigation. Therefore, the paper at hand aims at investigating whether PWAs are a suitable alternative for native apps by developing a PWA clone of an existing app. Two surveys are conducted in which potential users test and evaluate the PWA prototype with regard to its usability. The survey results indicate that PWAs have great potential, but cannot be treated as a general alternative to native apps. For guiding developers when and how to use PWAs, four design guidelines for the development of PWA-based apps are derived based on the results. KW - Progressive Web App KW - PWA KW - Cross-platform KW - Evaluation KW - Mobile web Y1 - 2021 SN - 978-3-88579-713-5 SP - 35 EP - 48 PB - Gesellschaft für Informatik CY - Darmstadt ER - TY - CHAP A1 - Dachwald, Bernd T1 - Solar sail dynamics and control T2 - Encyclopedia of Aerospace Engineering N2 - Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given. KW - solar sail KW - sailcraft KW - orbital dynamics KW - orbit control KW - attitude dynamics Y1 - 2010 U6 - https://doi.org/10.1002/9780470686652.eae292 PB - Wiley CY - Hoboken ER - TY - CHAP A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Sherelkhan, Dinara K. A1 - Razzaque, Mohammed S. T1 - Vitamin D and Phosphate Interactions in Health and Disease T2 - Phosphate Metabolism N2 - Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30–40% and phosphate to nearly 80%. Serum phosphate levels can also influence 1,25 (OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease. KW - Vitamin D KW - PTH KW - Phosphate KW - FGF23 KW - Klotho Y1 - 2022 SN - 978-3-030-91621-3 U6 - https://doi.org/10.1007/978-3-030-91623-7_5 SP - 37 EP - 46 PB - Springer CY - Cham ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Caminos, R.A. Chico A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating Solar Power T2 - Earth systems and environmental sciences N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Concentrating solar power KW - Fresnel power plant KW - Gas turbine Y1 - 2021 SN - 978-0-12-409548-9 U6 - https://doi.org/10.1016/B978-0-12-819727-1.00089-3 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Leise, Philipp A1 - Altherr, Lena A1 - Simon, Nicolai A1 - Pelz, Peter F. T1 - Finding global-optimal gearbox designs for battery electric vehicles T2 - Optimization of complex systems - theory, models, algorithms and applications : WCGO 2019 N2 - In order to maximize the possible travel distance of battery electric vehicles with one battery charge, it is mandatory to adjust all components of the powertrain carefully to each other. While current vehicle designs mostly simplify the powertrain rigorously and use an electric motor in combination with a gearbox with only one fixed transmission ratio, the use of multi-gear systems has great potential. First, a multi-speed system is able to improve the overall energy efficiency. Secondly, it is able to reduce the maximum momentum and therefore to reduce the maximum current provided by the traction battery, which results in a longer battery lifetime. In this paper, we present a systematic way to generate multi-gear gearbox designs that—combined with a certain electric motor—lead to the most efficient fulfillment of predefined load scenarios and are at the same time robust to uncertainties in the load. Therefore, we model the electric motor and the gearbox within a Mixed-Integer Nonlinear Program, and optimize the efficiency of the mechanical parts of the powertrain. By combining this mathematical optimization program with an unsupervised machine learning algorithm, we are able to derive global-optimal gearbox designs for practically relevant momentum and speed requirements. KW - Powertrain KW - Gearbox KW - Optimization KW - BEV KW - WLTP Y1 - 2019 SN - 978-3-030-21802-7 U6 - https://doi.org/10.1007/978-3-030-21803-4_91 SP - 916 EP - 925 PB - Springer CY - Cham ER - TY - CHAP A1 - Stenger, David A1 - Altherr, Lena A1 - Abel, Dirk T1 - Machine learning and metaheuristics for black-box optimization of product families: a case-study investigating solution quality vs. computational overhead T2 - Operations Research Proceedings 2018 N2 - In product development, numerous design decisions have to be made. Multi-domain virtual prototyping provides a variety of tools to assess technical feasibility of design options, however often requires substantial computational effort for just a single evaluation. A special challenge is therefore the optimal design of product families, which consist of a group of products derived from a common platform. Finding an optimal platform configuration (stating what is shared and what is individually designed for each product) and an optimal design of all products simultaneously leads to a mixed-integer nonlinear black-box optimization model. We present an optimization approach based on metamodels and a metaheuristic. To increase computational efficiency and solution quality, we compare different types of Gaussian process regression metamodels adapted from the domain of machine learning, and combine them with a genetic algorithm. We illustrate our approach on the example of a product family of electrical drives, and investigate the trade-off between solution quality and computational overhead. KW - Product family optimization KW - Mixed-integer nonlinear black-box optimization KW - Engineering optimization KW - Machine learning Y1 - 2019 SN - 978-3-030-18499-5 (Print) SN - 978-3-030-18500-8 (Online) U6 - https://doi.org/10.1007/978-3-030-18500-8_47 SP - 379 EP - 385 PB - Springer CY - Cham ER -