TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Yamaguchi, Masato A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions N2 - Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat. KW - industrial gas turbine KW - combustor development KW - engine demonstration KW - fuels KW - hydrogen Y1 - 2021 U6 - https://doi.org/10.1115/GT2021-59666 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. June 7–11, 2021. Virtual, Online. Paper No: GT2021-59666, V03BT04A014 ER - TY - CHAP A1 - Kroniger, Daniel A1 - Horikawa, Atsushi A1 - Funke, Harald A1 - Pfäffle, Franziska A1 - Kishimoto, Tsuyoshi A1 - Okada, Koichi T1 - Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3A: Combustion, Fuels, and Emissions N2 - The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration. KW - NOx emissions KW - hydrogen KW - combustor KW - gas turbine Y1 - 2021 U6 - https://doi.org/10.1115/GT2021-58926 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, June 7–11, 2021, Virtual, Online. Paper No: GT2021-58926, V03AT04A025 PB - ASME CY - New York, NY ER - TY - JOUR A1 - Neu, Eugen A1 - Janser, Frank A1 - Khatibi, Akbar A. A1 - Orifici, Adrian C. T1 - Fully Automated Operational Modal Analysis using multi-stage clustering JF - Mechanical Systems and Signal Processing Y1 - 2017 U6 - https://doi.org/10.1016/j.ymssp.2016.07.031 SN - 0888-3270 VL - Vol. 84, Part A SP - 308 EP - 323 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Funke, Harald A1 - Keinz, Jan A1 - Kusterer, Karsten A1 - Ayed, Anis Haj A1 - Kazari, Masahide A1 - Kitajima, Junichi A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications JF - Journal of Thermal Science and Engineering Applications N2 - Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation. Y1 - 2016 U6 - https://doi.org/10.1115/1.4034849 SN - 1948-5093 N1 - TSEA-15-1227 VL - 9 IS - 2 SP - 021001 EP - 021001-10 PB - ASME CY - New York, NY ER - TY - JOUR A1 - Ayed, Anis Haj A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Keinz, Jan T1 - CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities JF - American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of Hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. Thus, the development of DLN combustion technologies is an essential and challenging task for the future of Hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel has been developed to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flash-back and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. The Micromix Combustion technology has been already proven experimentally and numerically for pure Hydrogen fuel operation at different energy density levels. The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NOx emission and to identify the most relevant design parameters, aiming to provide a physical understanding of the Micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application. The study reveals great optimization potential of the Micromix Combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the Micromix burners and to integrate this technology in industrial gas turbines. Y1 - 2016 SN - 2313-4402 VL - 26 IS - 3 SP - 290 EP - 303 PB - GSSRR ER - TY - JOUR A1 - Neu, Eugen A1 - Janser, Frank A1 - Khatibi, Akbar A. A1 - Orifici, Adrian C. T1 - Automated modal parameter-based anomaly detection under varying wind excitation JF - Structural Health Monitoring N2 - Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions. Y1 - 2016 U6 - https://doi.org/10.1177/1475921716665803 SN - 1475-9217 VL - 15 IS - 6 SP - 1 EP - 20 PB - Sage CY - London ER - TY - THES A1 - Keinz, Jan T1 - Optimization of a Dry Low NOx Micromix Combustor for an Industrial Gas Turbine Using Hydrogen-Rich Syngas Fuel Y1 - 2018 N1 - Dissertation submitted for the degree of Doctor of Engineering Sciences and Technology ; in Cooperation with Aachen university of Applied Sciences, Department Aerospace Technology; Thesis director: Prof. P. Hendrick; Thesis co-director: Prof. H. Funke PB - Université Libre de Bruxelles - Brussels School of Engineering Aero-Thermo-Mechanics CY - Brüssel ER - TY - JOUR A1 - Maurischat, Andreas T1 - Algebraic independence of the Carlitz period and its hyperderivatives KW - Drinfeld modules KW - t-modules KW - Transcendence KW - Hyperdifferentials Y1 - 2021 N1 - Zweitveröffentlichung. Verlagsveröffentlichung: https://doi.org/10.1016/j.jnt.2022.01.006 SP - 1 EP - 12 ER - TY - JOUR A1 - Bohndick, Carla A1 - Bosse, Elke A1 - Jänsch, Vanessa K. A1 - Barnat, Miriam T1 - How different diversity factors affect the perception of first-year requirements in higher education JF - Frontline Learning Research N2 - In the light of growing university entry rates, higher education institutions not only serve larger numbers of students, but also seek to meet first-year students’ ever more diverse needs. Yet to inform universities how to support the transition to higher education, research only offers limited insights. Current studies tend to either focus on the individual factors that affect student success or they highlight students’ social background and their educational biography in order to examine the achievement of selected, non-traditional groups of students. Both lines of research appear to lack integration and often fail to take organisational diversity into account, such as different types of higher education institutions or degree programmes. For a more comprehensive understanding of student diversity, the present study includes individual, social and organisational factors. To gain insights into their role for the transition to higher education, we examine how the different factors affect the students’ perception of the formal and informal requirements of the first year as more or less difficult to cope with. As the perceived requirements result from both the characteristics of the students and the institutional context, they allow to investigate transition at the interface of the micro and the meso level of higher education. Latent profile analyses revealed that there are no profiles with complex patterns of perception of the first-year requirements, but the identified groups rather differ in the overall level of perceived challenges. Moreover, SEM indicates that the differences in the perception largely depend on the individual factors self-efficacy and volition. Y1 - 2021 U6 - https://doi.org/10.14786/flr.v9i2.667 SN - 2295-3159 VL - 9 IS - 2 SP - 78 EP - 95 PB - EARLI ER - TY - CHAP A1 - Ayed, Anis Haj A1 - Striegan, Constantin J. D. A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Kazari, M. A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Automated design space exploration of the hydrogen fueled "Micromix" combustor technology N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Y1 - 2017 N1 - Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017, Jan 16-18, 2017, Zurich, Switzerland SP - 1 EP - 8 ER -