TY - CHAP A1 - Buschkühle, Peter A1 - Schürmann, Volker A1 - Wollert, Jörg T1 - Abstraction of wireless communication by a convergence middleware in conjunction with a XML-configuration T2 - Information technology and electrical engineering : devices and systems, materials and technologies for the future ; Ilmenau 07 - 10 September 2009 ; 54. IWK Internationales Wissenschaftliches Kolloquium Y1 - 2009 SN - 978-3-938843-44-4 SP - 95 EP - 96 PB - Techn. Univ. CY - Ilmenau ER - TY - CHAP A1 - Busse, Daniel A1 - Esch, Thomas A1 - Muntaniol, Roman T1 - Thermal management in E-carsharing vehicles - preconditioning concepts of passenger compartments T2 - E-Mobility in Europe : trends and good practice N2 - The issue of thermal management in electric vehicles includes the topics of drivetrain cooling and heating, interior temperature, vehicle body conditioning and safety. In addition to the need to ensure optimal thermal operating conditions of the drivetrain components (drive motor, battery and electrical components), thermal comfort must be provided for the passengers. Thermal comfort is defined as the feeling which expresses the satisfaction of the passengers with the ambient conditions in the compartment. The influencing factors on thermal comfort are the temperature and humidity as well as the speed of the indoor air and the clothing and the activity of the passengers, in addition to the thermal radiation and the temperatures of the interior surfaces. The generation and the maintenance of free visibility (ice- and moisture-free windows) count just as important as on-demand heating and cooling of the entire vehicle. A Carsharing climate concept of the innovative ec2go vehicle stipulates and allows for only seating areas used by passengers to be thermally conditioned in a close-to-body manner. To enable this, a particular feature has been added to the preconditioning of the Carsharing electric vehicle during the electric charging phase at the parking station. KW - Carsharing KW - Thermal management KW - Thermal comfort KW - Electrical vehicle KW - Passenger compartment Y1 - 2015 SN - 978-3-319-13193-1 U6 - http://dx.doi.org/10.1007/978-3-319-13194-8_18 SP - 327 EP - 343 PB - Springer CY - Cham [u.a.] ER - TY - CHAP A1 - Butenweg, Christoph ED - Vacareanu, Radu ED - Ionescu, Constantin T1 - Seismic design and evaluation of industrial facilities T2 - Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology – Bucharest, 2022 N2 - Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage. KW - Industrial facilities KW - Seismic design KW - Tanks KW - EN 1998-4 KW - Structural health monitoring Y1 - 2022 SN - 978-3-031-15103-3 SN - 978-3-031-15106-4 SN - 978-3-031-15104-0 U6 - http://dx.doi.org/10.1007/978-3-031-15104-0 SN - 2524-342X SN - 2524-3438 N1 - Third European Conference on Earthquake Engineering and Seismology. 04-09.09 Bucharest, Romania. SP - 449 EP - 464 PB - Springer CY - Cham ER - TY - CHAP A1 - Butenweg, Christoph ED - Kuzmanović, Vladan ED - Ignjatović, Ivan T1 - Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies T2 - Civil Engineering 2021 – Achievements and Visions: Proceedings of the International Conferenecs celebrating 175th Anniversary of the Faculty of Civil Engineering, University of Belgrade, October 25 – 26, 2021 Belgrade, Serbia Y1 - 2021 PB - University of Belgrade CY - Belgrade ER - TY - CHAP A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Nardin, Chiara A1 - Lanese, Igor A1 - Pavese, Alberto A1 - Marinković, Marko A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca T1 - Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities T2 - Pressure Vessels & Piping Virtual Conference July 13-15, 2021 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 SN - 9780791885352 U6 - http://dx.doi.org/10.1115/PVP2021-61696 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - JOUR A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Paolacci, Fabrizio A1 - Marinković, Marko A1 - Lanese, Igor A1 - Nardin, Chiara A1 - Quinci, Gianluca ED - Yang, J. T1 - Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing JF - Engineering Structures N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions. KW - Multi-storey KW - Frame structure KW - Earthquake KW - Tank KW - Piping Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.engstruct.2021.112681 SN - 0141-0296 VL - 243 IS - 15 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gajewski, R. A1 - Thierauf, Georg T1 - A practical approach for the optimum design of reinforced concrete structures T2 - Developments in computational mechanics with high performance computing : [papers presented at the Third Euro-Conference on Parallel and Distributed Computing for Computational Mechanics, held in Weimar, Germany between 20 - 25 March 1999] / ed. by B. H. V. Topping Y1 - 1999 SN - 0-94-8749-59-8 SP - 245 EP - 250 PB - Civil-Comp Press CY - Edinburgh ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gellert, Christoph T1 - Displacement based design of masonry structures T2 - Proceedings of the 14th International Brick and Block Masonry Conference : (Incorporating the 8th Australasian Masonry Conference) : Sydney, Australia, 13.-20. February 2008 / ed. Mark Masia ... Y1 - 2008 SN - 978-19-2070-1-92-5 SP - 1 EP - 10 PB - University of Newcastle CY - Callaghan ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gellert, Christoph A1 - Reindl, Lukas T1 - Capacity design of masonry buildings under cyclic loading T2 - Seismic Risk : Earthquakes in North-Western Europe ; international colloquium ; Liège on 11 and 12 September 2008 / Belgian Seismic Group (BeSeiG). Ed.: T. Camlebeeck ... Y1 - 2008 SN - 978-2-87456-063-7 SP - 201 EP - 208 PB - Editions de l'Université de Liège CY - Liège ER - TY - GEN A1 - Butenweg, Christoph A1 - Gellert, Christoph A1 - Reindl, Lukas A1 - Meskouris, Konstantin T1 - A nonlinear method for the seismic safety verification of masonry buildings N2 - In order for traditional masonry to stay a competitive building material in seismically active regions there is an urgent demand for modern, deformation-based verification procedures which exploit the nonlinear load bearing reserves. The Capacity Spectrum Method (CSM) is a widely accepted design approach in the field of reinforced concrete and steel construction. It compares the seismic action with the load-bearing capacity of the building considering nonlinear material behavior with its post-peak capacity. The bearing capacity of the building is calculated iteratively using single wall capacity curves. This paper presents a new approach for the bilinear approximation of single wall capacity curves in the style of EC6/EC8 respectively FEMA 306/FEMA 356 based on recent shear wall test results of the European Collective-Research Project “ESECMaSE”. The application of the CSM to masonry structures by using bilinear approximations of capacity curves as input is demonstrated on the example of a typical German residential home. Y1 - 2009 N1 - COMPDYN 2009 - 2nd International Conference on Computational Methods in Structural Dynamics & Earthquake Engineering. Isles of Rhodes, Greece, June 22-24,2009. PB - National Technical University of Athens CY - Athen ER -