TY - JOUR A1 - Akimbekov, N.Sh. A1 - Digel, Ilya A1 - O´Heras, C. A1 - Tastambek, K.T. A1 - Savitskaya, I.S. A1 - Ualyeva, P.S. A1 - Mansurov, Z.A. A1 - Zhubanova, A.A. T1 - Adsorption of bacterial lipopolysaccharides on carbonized rice husks obtained in the batch experiments JF - Experimental Biology N2 - The scope of this study is the measurement of endotoxin adsorption rate for carbonized rice husk. It showed good adsorption properties for LPS. During the batch experiments, several techniques were used and optimized for improving the material’s adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. KW - surface modification KW - adsorption KW - carbonized rice husk KW - lipopolysaccharide Y1 - 2014 SN - 1563-0218 N1 - Original in russischer Sprache VL - 60 IS - 1/2 SP - 144 EP - 148 PB - Al-Farabi Kazakh National University CY - Almaty ER - TY - JOUR A1 - Akimbekov, N. Sh. A1 - Digel, Ilya A1 - Zhubanova, A. A. T1 - Investigation the Influence of Carbonized Material Based On Rice Husk on Viability and Migration of Fibroblasts in T3B3 Cell Culture JF - KazNU Bulletin. Biology series Y1 - 2013 SN - 1563-0218 N1 - Original in russischer Sprache VL - 59 IS - 3/1 SP - 20 EP - 23 ER - TY - JOUR A1 - Turlybekuly, Amanzhol A1 - Pogrebnjak, Alexander A1 - Sukhodub, L. F. A1 - Sukhodub, Liudmyla B. A1 - Kistaubayeva, A. S. A1 - Savitskaya, Irina A1 - Shokatayeva, D. H. A1 - Bondar, Oleksandr V. A1 - Shaimardanov, Z. K. A1 - Plotnikov, Sergey V. A1 - Shaimardanova, B. H. A1 - Digel, Ilya T1 - Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in Alginate matrix JF - Materials Science and Engineering C Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.msec.2019.109965 VL - 104 IS - Article number 109965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Sherelkhan, Dinara K. A1 - Lutfor, Afzalunnessa B. A1 - Razzaque, Mohammed S. T1 - Vitamin D and the Host-Gut Microbiome: A Brief Overview JF - Acta Histochemica et Cytochemica N2 - There is a growing body of evidence for the effects of vitamin D on intestinal host-microbiome interactions related to gut dysbiosis and bowel inflammation. This brief review highlights the potential links between vitamin D and gut health, emphasizing the role of vitamin D in microbiological and immunological mechanisms of inflammatory bowel diseases. A comprehensive literature search was carried out in PubMed and Google Scholar using combinations of keywords “vitamin D,” “intestines,” “gut microflora,” “bowel inflammation”. Only articles published in English and related to the study topic are included in the review. We discuss how vitamin D (a) modulates intestinal microbiome function, (b) controls antimicrobial peptide expression, and (c) has a protective effect on epithelial barriers in the gut mucosa. Vitamin D and its nuclear receptor (VDR) regulate intestinal barrier integrity, and control innate and adaptive immunity in the gut. Metabolites from the gut microbiota may also regulate expression of VDR, while vitamin D may influence the gut microbiota and exert anti-inflammatory and immune-modulating effects. The underlying mechanism of vitamin D in the pathogenesis of bowel diseases is not fully understood, but maintaining an optimal vitamin D status appears to be beneficial for gut health. Future studies will shed light on the molecular mechanisms through which vitamin D and VDR interactions affect intestinal mucosal immunity, pathogen invasion, symbiont colonization, and antimicrobial peptide expression. Y1 - 2020 U6 - http://dx.doi.org/10.1267/ahc.20011 SN - 1347-5800 VL - 53 IS - 3 SP - 33 EP - 42 PB - Japan Society of Histochemistry and Cytochemistry CY - Osaka ER - TY - JOUR A1 - Akimbekov, Nuraly A1 - Qiao, Xiaohui A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Zhubanova, Azhar T1 - The effect of leonardite-derived amendments on soil microbiome structure and potato yield JF - Agriculture N2 - Humic substances originating from various organic matters can ameliorate soil properties, stimulate plant growth, and improve nutrient uptake. Due to the low calorific heating value, leonardite is rather unsuitable as fuel. However, it may serve as a potential source of humic substances. This study was aimed at characterizing the leonardite-based soil amendments and examining the effect of their application on the soil microbial community, as well as on potato growth and tuber yield. A high yield (71.1%) of humic acid (LHA) from leonardite has been demonstrated. Parental leonardite (PL) and LHA were applied to soil prior to potato cultivation. The 16S rRNA sequencing of soil samples revealed distinct relationships between microbial community composition and the application of leonardite-based soil amendments. Potato tubers were planted in pots in greenhouse conditions. The tubers were harvested at the mature stage for the determination of growth and yield parameters. The results demonstrated that the LHA treatments had a significant effect on increasing potato growth (54.9%) and tuber yield (66.4%) when compared to the control. The findings highlight the importance of amending leonardite-based humic products for maintaining the biogeochemical stability of soils, for keeping their healthy microbial community structure, and for increasing the agronomic productivity of potato plants. Y1 - 2020 U6 - http://dx.doi.org/10.3390/agriculture10050147 VL - 10 IS - Art. 147 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Alexyuk, Madina A1 - Bogoyavlenskiy, Andrey A1 - Alexyuk, Pavel A1 - Moldakhanov, Yergali A1 - Berezin, Vladimir A1 - Digel, Ilya T1 - Epipelagic microbiome of the Small Aral Sea: Metagenomic structure and ecological diversity JF - MicrobiologyOpen N2 - Microbial diversity studies regarding the aquatic communities that experienced or are experiencing environmental problems are essential for the comprehension of the remediation dynamics. In this pilot study, we present data on the phylogenetic and ecological structure of microorganisms from epipelagic water samples collected in the Small Aral Sea (SAS). The raw data were generated by massive parallel sequencing using the shotgun approach. As expected, most of the identified DNA sequences belonged to Terrabacteria and Actinobacteria (40% and 37% of the total reads, respectively). The occurrence of Deinococcus-Thermus, Armatimonadetes, Chloroflexi in the epipelagic SAS waters was less anticipated. Surprising was also the detection of sequences, which are characteristic for strict anaerobes—Ignavibacteria, hydrogen-oxidizing bacteria, and archaeal methanogenic species. We suppose that the observed very broad range of phylogenetic and ecological features displayed by the SAS reads demonstrates a more intensive mixing of water masses originating from diverse ecological niches of the Aral-Syr Darya River basin than presumed before. KW - ecological structure KW - metagenomics KW - microbial diversity KW - shotgun sequencing KW - Small Aral Sea Y1 - 2021 U6 - http://dx.doi.org/10.1002/mbo3.1142 SN - 2045-8827 VL - 10 IS - 1 SP - 1 EP - 10 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Pogorelova, Natalia A1 - Rogachev, Evgeniy A1 - Akimbekov, Nuraly A1 - Digel, Ilya T1 - Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates JF - Journal of materials science N2 - Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1%, dried until a constant weight was reached) and freeze-drying (FD, treated at − 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity. Y1 - 2024 U6 - http://dx.doi.org/10.1007/s10853-024-09596-3 SN - 1573-4803 (Online) SN - 0022-2461 (Print) N1 - Corresponding author: Ilya Digel VL - 2024 PB - Springer Science + Business Media CY - Dordrecht ER - TY - JOUR A1 - Bayer, Robin A1 - Temiz Artmann, Aysegül A1 - Digel, Ilya A1 - Falkenstein, Julia A1 - Artmann, Gerhard A1 - Creutz, Till A1 - Hescheler, Jürgen T1 - Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model JF - Cellular Physiology and Biochemistry N2 - Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5% and 50nM verapamil by 2,8%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis. Y1 - 2020 U6 - http://dx.doi.org/10.33594/000000225 SN - 1421-9778 VL - 54 SP - 371 EP - 383 PB - Cell Physiol Biochem Press CY - Düsseldorf ER - TY - JOUR A1 - Akimbekov, Nuraly A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Tastambek, Kuanysh T1 - Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data JF - Biofuels N2 - The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24% of crude lignite (5% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe–mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health. KW - humic acid KW - Bacillus sp KW - lignite KW - Biosolubilization Y1 - 2021 SN - 1759-7277 VL - 12 IS - 3 SP - 247 EP - 258 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Digel, Ilya A1 - Kern, Inna A1 - Geenen, Eva-Maria A1 - Akimbekov, Nuraly T1 - Dental plaque removal by ultrasonic toothbrushes JF - dentistry journal N2 - With the variety of toothbrushes on the market, the question arises, which toothbrush is best suited to maintain oral health? This thematic review focuses first on plaque formation mechanisms and then on the plaque removal effectiveness of ultrasonic toothbrushes and their potential in preventing oral diseases like periodontitis, gingivitis, and caries. We overviewed the physical effects that occurred during brushing and tried to address the question of whether ultrasonic toothbrushes effectively reduced the microbial burden by increasing the hydrodynamic forces. The results of published studies show that electric toothbrushes, which combine ultrasonic and sonic (or acoustic and mechanic) actions, may have the most promising effect on good oral health. Existing ultrasonic/sonic toothbrush models do not significantly differ regarding the removal of dental biofilm and the reduction of gingival inflammation compared with other electrically powered toothbrushes, whereas the manual toothbrushes show a lower effectiveness. Y1 - 2020 U6 - http://dx.doi.org/10.3390/dj8010028 SN - 2304-6767 VL - 8 IS - 28 SP - 1 EP - 13 PB - MDPI CY - Basel ER -