TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Vahidpour, Farnoosh A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide JF - Sensor and Actuators A: Physical N2 - Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor–pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues. Y1 - 2020 U6 - https://doi.org/10.1016/j.sna.2019.111691 SN - 0924-4247 VL - 303 IS - 111691 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Kreyer, Jörg A1 - Müller, Marvin A1 - Esch, Thomas T1 - A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude N2 - In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented. Y1 - 2020 U6 - https://doi.org/10.25967/490162 N1 - 68. Deutscher Luft- und Raumfahrtkongress 30.09.-02.10.2019, Darmstadt PB - DGLR CY - Bonn ER - TY - CHAP A1 - Azat, Seitkhan A1 - Kerimkulova, Almagul R. A1 - Mansurov, Zulkhair A. A1 - Adekenov, Sergazy A1 - Artmann, Gerhard T1 - The Use of Fusicoccin as Anticancer Compound T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - The problem of creation and use of sorption materials is of current interest for the practice of the modern medicine and agriculture. Practical importance is production of a biostimulant using a carbon sorbent for a significant increase in productivity, which is very relevant for the regions of Kazakhstan. It is known that a plant phytohormone—fusicoccin—in nanogram concentrations transforms cancer cells to the state of apoptosis. In this regard, there is a scientific practical interest in the development of a highly efficient method for producing fusicoccin from extract of germinated wheat seeds. According to the results of computer modeling, cleaning composite components of fusicoccin using microporous carbon adsorbents not suitable as the size of the molecule of fusicoccin more than micropores and the optimum pore size for purification of constituents of fusicoccin was determined by computer simulation. Y1 - 2020 SN - 978-0-429-42864-7 U6 - https://doi.org/10.1201/9780429428647-8 SP - 149 EP - 172 PB - Jenny Stanford Publishing CY - New York ER - TY - JOUR A1 - Cosma, Cosmin A1 - Kessler, Julia A1 - Gebhardt, Andreas A1 - Campbell, Ian A1 - Balc, Nicolae T1 - Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed JF - Materials N2 - To manufacture custom medical parts or scaffolds with reduced defects and high mechanical characteristics, new research on optimizing the selective laser melting (SLM) parameters are needed. In this work, a biocompatible powder, 316L stainless steel, is characterized to understand the particle size, distribution, shape and flowability. Examination revealed that the 316L particles are smooth, nearly spherical, their mean diameter is 39.09 μm and just 10% of them hold a diameter less than 21.18 μm. SLM parameters under consideration include laser power up to 200 W, 250–1500 mm/s scanning speed, 80 μm hatch spacing, 35 μm layer thickness and a preheated platform. The effect of these on processability is evaluated. More than 100 samples are SLM-manufactured with different process parameters. The tensile results show that is possible to raise the ultimate tensile strength up to 840 MPa, adapting the SLM parameters for a stable processability, avoiding the technological defects caused by residual stress. Correlating with other recent studies on SLM technology, the tensile strength is 20% improved. To validate the SLM parameters and conditions established, complex bioengineering applications such as dental bridges and macro-porous grafts are SLM-processed, demonstrating the potential to manufacture medical products with increased mechanical resistance made of 316L. Y1 - 2020 U6 - https://doi.org/10.3390/ma13040905 SN - 1996-1944 VL - 13 IS - 4 SP - 1 EP - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mennicken, Max A1 - Peter, Sophia K. A1 - Kaulen, Corinna A1 - Simon, Ulrich A1 - Karthäuser, Silvia T1 - Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices JF - The Journal of Physical Chemistry C N2 - Transition metal complexes are electrofunctional molecules due to their high conductivity and their intrinsic switching ability involving a metal-to-ligand charge transfer. Here, a method is presented to contact reliably a few to single redox-active Ru-terpyridine complexes in a CMOS compatible nanodevice and preserve their electrical functionality. Using hybrid materials from 14 nm gold nanoparticles (AuNP) and bis-{4′-[4-(mercaptophenyl)-2,2′:6′,2″-terpyridine]}-ruthenium(II) complexes a device size of 30² nm² inclusive nanoelectrodes is achieved. Moreover, this method bears the opportunity for further downscaling. The Ru-complex AuNP devices show symmetric and asymmetric current versus voltage curves with a hysteretic characteristic in two well separated conductance ranges. By theoretical approximations based on the single-channel Landauer model, the charge transport through the formed double-barrier tunnel junction is thoroughly analyzed and its sensibility to the molecule/metal contact is revealed. It can be verified that tunneling transport through the HOMO is the main transport mechanism while decoherent hopping transport is present to a minor extent. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.9b11716 SN - 1932-7455 VL - 124 IS - 8 SP - 4881 EP - 4889 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Wardoyo, Arinto Y.P. A1 - Noor, Johan A.E. A1 - Elbers, Gereon A1 - Schmitz, Sandra A1 - Flaig, Sascha T. A1 - Budianto, Arif T1 - Characterizing volcanic ash elements from the 2015 eruptions of bromo and raung volcanoes, Indonesia JF - Polish Journal of Environmental Studies N2 - The volcanic eruptions of Mt. Bromo and Mt. Raung in East Java, Indonesia, in 2015 perturbed volcanic materials and affected surface-layer air quality at surrounding locations. During the episodes, the volcanic ash from the eruptions influenced visibility, traffic accidents, flight schedules, and human health. In this research, the volcanic ash particles were collected and characterized by relying on the detail of physical observation. We performed an assessment of the volcanic ash elements to characterize the volcanic ash using two different methods which are aqua regia extracts followed by MP-AES and XRF laboratory test of bulk samples. The analysis results showed that the volcanic ash was mixed of many materials, such as Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, and others. Fe, Si, Ca, and Al were found as the major elements, while the others were the trace elements Ba, Cr, Cu, Mn, P, Mn, Ni, Zn, Sb, Sr, and V with the minor concentrations. XRF analyses showed that Fe dominated the elements of the volcanic ash. The XRF analysis showed that Fe was at 35.40% in Bromo and 43.00% in Raung of the detected elements in bulk material. The results of aqua regia extracts analyzed by MP-AES were 1.80% and 1.70% of Fe element for Bromo and Raung volcanoes, respectively. Y1 - 2020 U6 - https://doi.org/10.15244/pjoes/99101 SN - 2083-5906 VL - 29 IS - 2 SP - 1899 EP - 1907 PB - HARD CY - Olsztyn ER - TY - JOUR A1 - Khayyam, Hamid A1 - Jamali, Ali A1 - Bab-Hadiashar, Alireza A1 - Esch, Thomas A1 - Ramakrishna, Seeram A1 - Jalil, Mahdi A1 - Naebe, Minoo T1 - A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0 JF - IEEE Access N2 - To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements. Y1 - 2020 SN - 2169-3536 U6 - https://doi.org/10.1109/ACCESS.2020.2999898 SP - 1 EP - 12 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Hailer, Benjamin A1 - Weber, Tobias A1 - Neveling, Sebastian A1 - Dera, Samuel A1 - Arent, Jan-Christoph A1 - Middendorf, Peter T1 - Development of a test device to determine the frictional behavior between honeycomb and prepreg layers under realistic manufacturing conditions JF - Journal of Sandwich Structures & Materials N2 - In the friction tests between honeycomb with film adhesive and prepreg, the relative displacement occurs between the film adhesive and the prepreg. The film adhesive does not shift relative to the honeycomb. This is consistent with the core crush behavior where the honeycomb moves together with the film adhesive, as can be seen in Figure 2(a). The pull-through forces of the friction measurements between honeycomb and prepreg at 1 mm deformation are plotted in Figure 17(a). While the friction at 100°C is similar to the friction at 120°C, it decreases significantly at 130°C and exhibits a minimum at 140°C. At 150°C, the friction rises again slightly and then sharply at 160°C. Since the viscosity of the M18/1 prepreg resin drops significantly before it cures [23], the minimum friction at 140°C could result from a minimum viscosity of the mixture of prepreg resin and film adhesive before the bond subsequently cures. Figure 17(b) shows the mean value curve of the friction measurements at 140°C. The error bars, which represent the standard deviation, reveal the good repeatability of the tests. The force curve is approximately horizontal between 1 mm and 2 mm. The friction then slightly rises. As with interlaminar friction measurements, this could be due to the fact that resin is removed by friction and the proportion of boundary lubrication increases. Figure 18 shows the surfaces after the friction measurement. The honeycomb cell walls are clearly visible in the film adhesive. There are areas where the film adhesive is completely removed and the carrier material of the film adhesive becomes visible. In addition, the viscosity of the resin changes as the curing progresses during the friction test. This can also affect the force-displacement curve. Y1 - 2020 U6 - https://doi.org/10.1177/1099636220923986 SN - 1530-7972 IS - Volume 23, Issue 7 SP - 3017 EP - 3043 PB - Sage CY - London ER - TY - CHAP A1 - Leise, Philipp A1 - Breuer, Tim A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Development, validation and assessment of a resilient pumping system T2 - Proceedings of the Joint International Resilience Conference, JIRC2020 N2 - The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour. KW - water supply system KW - fault detection KW - anticipation strategy Y1 - 2020 SN - 978-90-365-5095-6 N1 - Joint International Resilience Conference 2020. Interconnected: Resilience Innovations for Sustainable Development Goals. 23 - 27 November, 2020, Singapore SP - 97 EP - 100 ER - TY - CHAP A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Resilience enhancement of critical infrastructure – graph-theoretical resilience analysis of the water distribution system in the German city of Darmstadt T2 - 14th WCEAM Proceedings N2 - Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of water distribution systems (WDS), i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, graph-theoretical metrics have been proposed. In this study, a promising approach is first physically derived analytically and then applied to assess the resilience of the WDS for a district in a major German City. The topology based resilience index computed for every consumer node takes into consideration the resistance of the best supply path as well as alternative supply paths. This resistance of a supply path is derived to be the dimensionless pressure loss in the pipes making up the path. The conducted analysis of a present WDS provides insight into the process of actively influencing the resilience of WDS locally and globally by adding pipes. The study shows that especially pipes added close to the reservoirs and main branching points in the WDS result in a high resilience enhancement of the overall WDS. KW - Resilient infrastructure KW - Resilience assessment KW - Resilience metric graph theory KW - Water distribution system KW - Case study Y1 - 2020 SN - 978-3-030-64228-0 SN - 978-3-030-64227-3 U6 - https://doi.org/10.1007/978-3-030-64228-0_13 N1 - 14th WCEAM Proceedings. World Congress on Engineering Asset Management, 28-31 July 2019, Singapore Part of the Lecture Notes in Mechanical Engineering book series (LNME) SP - 137 EP - 149 PB - Springer CY - Cham ER -