TY - CHAP A1 - Bragard, Michael A1 - Köllensperger, P. A1 - De Doncker, R. W. ED - Dmowski, Antoni T1 - Der Internally Commutated Thyristor (ICT) : ein neuartiger GCT mit integrierter Ausschalteinheit T2 - "Nowoczesne urządzenia zasilające w energetyce" : X międzynarodowa konferencja naukowo techniczna, Zakopane, 14-16 marca 2007 r. : materiały konferencyjne Y1 - 2007 SN - 83-918709-7-9 SP - 7.1 EP - 7.9 PB - APS Energia CY - Warszawa ER - TY - CHAP A1 - Ringbeck, Thorsten A1 - Hagebeuker, Bianca ED - Grün, Armin T1 - A 3D time of flight camera of object detection T2 - Optical 3-D measurement techniques VIII : applications in GIS, mapping, manufacturing, quality control, robotics, navigation, mobile mapping, medical imaging, cultural heritage, VR generation and animation; papers presented to the conference organized at ETH Zurich, Switzerland, July 9 - 12, 2007. - Vol. 1 Y1 - 2007 SN - 3-906467-67-8 (Gesamtwerk) N1 - Conference on Optical 3-D Measurement Techniques <8, 2007, Zürich> SP - 1 EP - 16 PB - ETH CY - Zürich ER - TY - CHAP A1 - Weiss, Alexander A1 - Abanteriba, Sylvester A1 - Esch, Thomas T1 - Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow T2 - Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B N2 - Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations. Y1 - 2007 SN - 0-7918-4288-6 U6 - https://doi.org/10.1115/FEDSM2007-37387 N1 - Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B. San Diego, California, USA. July 30–August 2, 2007 SP - 1861 EP - 1871 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - CHAP A1 - Pfaff, Raphael A1 - Pichler, Alexander A1 - George, Alfred A1 - Seiler, Friedrich T1 - Model based image processing for flow visualisation : 16th International Conference on Systems Science, Wroclaw, Poland, September 04 - 06, 2007 T2 - PU / Institut Franco-Allemand de Recherches de Saint-Louis ; 2007, 620 Y1 - 2007 SP - 1 EP - 10 PB - ISL CY - Saint Louis, France ER -