TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration control of slender structures by semi-active tuned liquid column dampers T2 - Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07 Y1 - 2013 N1 - http://www.emi2013.northwestern.edu/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=213&type=1 Seite kann nicht gefunden werden. ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper T2 - 6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain Y1 - 2014 ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven A1 - Taddei, Francesca T1 - Vibration mitigation of wind turbine towers by tuned liquid column dampers T2 - Proceedings of the 9th European Conference on Structural Dynamics, EURODYN 2014 Porto, Portugal, 30 June - 2 July 2014 / A. Cunha, E. Caetano, .... (eds.) Y1 - 2014 SN - 978-972-752-165-4 SP - 1531 EP - 1538 CY - Porto ER - TY - CHAP A1 - Altay, Okyay A1 - Taddei, Francesca A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration mitigation of wind turbine towers with tuned mass dampers T2 - Wind turbine control and monitoring. (Advances in industrial control) N2 - Because of its minor environmental impact, electricity generation using wind power is getting remarkable. The further growth of the wind industry depends on technological solutions to the challenges in production and construction of the turbines. Wind turbine tower vibrations, which limit power generation efficiency and cause fatigue problems with high maintenance costs, count as one of the main structural difficulties in the wind energy sector. To mitigate tower vibrations auxiliary measures are necessary. The effectiveness of tuned mass damper is verified by means of a numeric study on a 5 MW onshore reference wind turbine. Hereby, also seismic-induced vibrations and soil–structure interaction are considered. Acquired results show that tuned mass damper can effectively reduce resonant tower vibrations and improve the fatigue life of wind turbines. This chapter is also concerned with tuned liquid column damper and a semiactive application of it. Due to its geometric versatility and low prime costs, tuned liquid column dampers are a good alternative to other damping measures, in particular for slender structures like wind turbines. Y1 - 2014 SN - 978-3-319-08412-1 (Print) ; 978-3-319-08413-8 (E-Book) U6 - http://dx.doi.org/10.1007/978-3-319-08413-8_12 SP - 337 EP - 373 PB - Springer CY - Cham ; Heidelberg ; New York ; Dordrecht ; London ER - TY - CHAP A1 - Anic, Filip A1 - Penava, Davorin A1 - Guljas, Ivica A1 - Sarhosis, Vasilis A1 - Abrahamczyk, Lars A1 - Butenweg, Christoph T1 - The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10168 SP - 1 EP - 11 ER - TY - CHAP A1 - Balaskas, Georgios A1 - Hoffmeister, Benno A1 - Butenweg, Christoph A1 - Pilz, Marco A1 - Bauer, Anna ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Earthquake early warning and response system based on intelligent seismic and monitoring sensors embedded in a communication platform and coupled with BIM models T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - This paper describes the concept of an innovative, interdisciplinary, user-oriented earthquake warning and rapid response system coupled with a structural health monitoring system (SHM), capable to detect structural damages in real time. The novel system is based on interconnected decentralized seismic and structural health monitoring sensors. It is developed and will be exemplarily applied on critical infrastructures in Lower Rhine Region, in particular on a road bridge and within a chemical industrial facility. A communication network is responsible to exchange information between sensors and forward warnings and status reports about infrastructures’health condition to the concerned recipients (e.g., facility operators, local authorities). Safety measures such as emergency shutdowns are activated to mitigate structural damages and damage propagation. Local monitoring systems of the infrastructures are integrated in BIM models. The visualization of sensor data and the graphic representation of the detected damages provide spatial content to sensors data and serve as a useful and effective tool for the decision-making processes after an earthquake in the region under consideration. KW - early warning and response system KW - interconnected sensor systems KW - seismic structural damage detection via SHM KW - integration SHM in BIM Y1 - 2021 SN - 978-618-85072-5-8 U6 - http://dx.doi.org/10.7712/120121.8539.18855 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 987 EP - 998 PB - National Technical University of Athens CY - Athen ER - TY - JOUR A1 - Baumgartner, Werner A1 - Fidler, Florian A1 - Weth, Agnes A1 - Habbecke, Martin A1 - Jakob, Peter A1 - Butenweg, Christoph A1 - Böhme, Wolfgang T1 - Investigating the locomotion of the sandfish in desert sand using NMR-Imaging JF - PLOS ONE N2 - The sandfish (Scincus scincus) is a lizard having the remarkable ability to move through desert sand for significant distances. It is well adapted to living in loose sand by virtue of a combination of morphological and behavioural specializations. We investigated the bodyform of the sandfish using 3D-laserscanning and explored its locomotion in loose desert sand using fast nuclear magnetic resonance (NMR) imaging. The sandfish exhibits an in-plane meandering motion with a frequency of about 3 Hz and an amplitude of about half its body length accompanied by swimming-like (or trotting) movements of its limbs. No torsion of the body was observed, a movement required for a digging-behaviour. Simple calculations based on the Janssen model for granular material related to our findings on bodyform and locomotor behaviour render a local decompaction of the sand surrounding the moving sandfish very likely. Thus the sand locally behaves as a viscous fluid and not as a solid material. In this fluidised sand the sandfish is able to “swim” using its limbs. KW - magnetic resonance imaging KW - body limbs KW - swimming KW - lizards KW - deserts Y1 - 2008 U6 - http://dx.doi.org/10.1371/journal.pone.0003309 SN - 1932-6203 VL - 3 IS - 10 PB - Plos CY - San Francisco, California, US ER - TY - JOUR A1 - Becker, Meike A1 - Frauenrath, Tobias A1 - Hezel, Fabian A1 - Krombach, Gabriele A. A1 - Kremer, Ute A1 - Koppers, Benedikt A1 - Butenweg, Christoph A1 - Goemmel, Andreas A1 - Utting, Jane F. A1 - Schulz-Menger, Jeanette A1 - Niendorf, Thoralf T1 - Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T JF - European Radiology N2 - Objective: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n=14). Methods: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT’s performance with vector ECG (VCG). Endocardial border sharpness (EBS) was examined paralleled by quantitative LV function assessment. Results: Unlike VCG, ACT provided signal traces free of interference from EMF or MHD effects. In the case of correct Rwave recognition, VCG-triggered 2D CINE SSFP was immune to cardiac motion effects—even at 3.0 T. However, VCG-triggered 2D SSFP CINE imaging was prone to cardiac motion and EBS degradation if R-wave misregistration occurred. ACT-triggered acquisitions yielded LV parameters (end-diastolic volume (EDV), endsystolic volume (ESV), stroke volume (SV), ejection fraction (EF) and left ventricular mass (LVM)) comparable with those derived fromVCG-triggered acquisitions (1.5 T: ESVVCG=(56± 17) ml, EDVVCG=(151±32)ml, LVMVCG=(97±27) g, SVVCG=(94± 19)ml, EFVCG=(63±5)% cf. ESVACT= (56±18) ml, EDVACT=(147±36) ml, LVMACT=(102±29) g, SVACT=(91± 22) ml, EFACT=(62±6)%; 3.0 T: ESVVCG=(55±21) ml, EDVVCG=(151±32) ml, LVMVCG=(101±27) g, SVVCG=(96±15) ml, EFVCG=(65±7)% cf. ESVACT=(54±20) ml, EDVACT=(146±35) ml, LVMACT= (101±30) g, SVACT=(92±17) ml, EFACT=(64±6)%). Conclusions: ACT’s intrinsic insensitivity to interference from electromagnetic fields renders KW - Magnetic resonance imaging (MRI) KW - MR-stethoscope KW - Magnetic field strength KW - Left ventriular function KW - Cardiovascular MRI Y1 - 2010 U6 - http://dx.doi.org/10.1007/s00330-009-1676-z SN - 1432-1084 (Onlineausgabe) SN - 0938-7994 (Druckausgabe) VL - 20 SP - 1344 EP - 1355 PB - Springer CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph ED - Vacareanu, Radu ED - Ionescu, Constantin T1 - Seismic design and evaluation of industrial facilities T2 - Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology – Bucharest, 2022 N2 - Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage. KW - Industrial facilities KW - Seismic design KW - Tanks KW - EN 1998-4 KW - Structural health monitoring Y1 - 2022 SN - 978-3-031-15103-3 SN - 978-3-031-15106-4 SN - 978-3-031-15104-0 U6 - http://dx.doi.org/10.1007/978-3-031-15104-0 SN - 2524-342X SN - 2524-3438 N1 - Third European Conference on Earthquake Engineering and Seismology. 04-09.09 Bucharest, Romania. SP - 449 EP - 464 PB - Springer CY - Cham ER - TY - CHAP A1 - Butenweg, Christoph ED - Kuzmanović, Vladan ED - Ignjatović, Ivan T1 - Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies T2 - Civil Engineering 2021 – Achievements and Visions: Proceedings of the International Conferenecs celebrating 175th Anniversary of the Faculty of Civil Engineering, University of Belgrade, October 25 – 26, 2021 Belgrade, Serbia Y1 - 2021 PB - University of Belgrade CY - Belgrade ER - TY - CHAP A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Nardin, Chiara A1 - Lanese, Igor A1 - Pavese, Alberto A1 - Marinković, Marko A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca T1 - Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities T2 - Pressure Vessels & Piping Virtual Conference July 13-15, 2021 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 SN - 9780791885352 U6 - http://dx.doi.org/10.1115/PVP2021-61696 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - JOUR A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Paolacci, Fabrizio A1 - Marinković, Marko A1 - Lanese, Igor A1 - Nardin, Chiara A1 - Quinci, Gianluca ED - Yang, J. T1 - Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing JF - Engineering Structures N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions. KW - Multi-storey KW - Frame structure KW - Earthquake KW - Tank KW - Piping Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.engstruct.2021.112681 SN - 0141-0296 VL - 243 IS - 15 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gajewski, R. A1 - Thierauf, Georg T1 - A practical approach for the optimum design of reinforced concrete structures T2 - Developments in computational mechanics with high performance computing : [papers presented at the Third Euro-Conference on Parallel and Distributed Computing for Computational Mechanics, held in Weimar, Germany between 20 - 25 March 1999] / ed. by B. H. V. Topping Y1 - 1999 SN - 0-94-8749-59-8 SP - 245 EP - 250 PB - Civil-Comp Press CY - Edinburgh ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gellert, Christoph T1 - Displacement based design of masonry structures T2 - Proceedings of the 14th International Brick and Block Masonry Conference : (Incorporating the 8th Australasian Masonry Conference) : Sydney, Australia, 13.-20. February 2008 / ed. Mark Masia ... Y1 - 2008 SN - 978-19-2070-1-92-5 SP - 1 EP - 10 PB - University of Newcastle CY - Callaghan ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gellert, Christoph A1 - Reindl, Lukas T1 - Capacity design of masonry buildings under cyclic loading T2 - Seismic Risk : Earthquakes in North-Western Europe ; international colloquium ; Liège on 11 and 12 September 2008 / Belgian Seismic Group (BeSeiG). Ed.: T. Camlebeeck ... Y1 - 2008 SN - 978-2-87456-063-7 SP - 201 EP - 208 PB - Editions de l'Université de Liège CY - Liège ER - TY - GEN A1 - Butenweg, Christoph A1 - Gellert, Christoph A1 - Reindl, Lukas A1 - Meskouris, Konstantin T1 - A nonlinear method for the seismic safety verification of masonry buildings N2 - In order for traditional masonry to stay a competitive building material in seismically active regions there is an urgent demand for modern, deformation-based verification procedures which exploit the nonlinear load bearing reserves. The Capacity Spectrum Method (CSM) is a widely accepted design approach in the field of reinforced concrete and steel construction. It compares the seismic action with the load-bearing capacity of the building considering nonlinear material behavior with its post-peak capacity. The bearing capacity of the building is calculated iteratively using single wall capacity curves. This paper presents a new approach for the bilinear approximation of single wall capacity curves in the style of EC6/EC8 respectively FEMA 306/FEMA 356 based on recent shear wall test results of the European Collective-Research Project “ESECMaSE”. The application of the CSM to masonry structures by using bilinear approximations of capacity curves as input is demonstrated on the example of a typical German residential home. Y1 - 2009 N1 - COMPDYN 2009 - 2nd International Conference on Computational Methods in Structural Dynamics & Earthquake Engineering. Isles of Rhodes, Greece, June 22-24,2009. PB - National Technical University of Athens CY - Athen ER - TY - BOOK A1 - Butenweg, Christoph A1 - Hoffmeister, Benno A1 - Holtschoppen, Britta A1 - Klinkel, Sven A1 - Rosin, Julia A1 - Schmitt, Timo T1 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 PB - Apprimus Verlag CY - Aachen ER - TY - CHAP A1 - Butenweg, Christoph A1 - Holtschoppen, Britta T1 - Seismic design of structures and components in industrial units T2 - Structural Dynamics with Applications in Earthquake and Wind Engineering N2 - Industrial units consist of the primary load-carrying structure and various process engineering components, the latter being by far the most important in financial terms. In addition, supply structures such as free-standing tanks and silos are usually required for each plant to ensure the supply of material and product storage. Thus, for the earthquake-proof design of industrial plants, design and construction rules are required for the primary structures, the secondary structures and the supply structures. Within the framework of these rules, possible interactions of primary and secondary structures must also be taken into account. Importance factors are used in seismic design in order to take into account the usually higher risk potential of an industrial unit compared to conventional building structures. Industrial facilities must be able to withstand seismic actions because of possibly wide-ranging damage consequences in addition to losses due to production standstill and the destruction of valuable equipment. The chapter presents an integrated concept for the seismic design of industrial units based on current seismic standards and the latest research results. Special attention is devoted to the seismic design of steel thin-walled silos and tank structures. KW - Industrial units KW - Seismic design KW - Tanks KW - Silos KW - Components Y1 - 2019 SN - 978-3-662-57550-5 U6 - http://dx.doi.org/10.1007/978-3-662-57550-5_5 SP - 359 EP - 481 PB - Springer CY - Berlin ER - TY - RPRT A1 - Butenweg, Christoph A1 - Kaiser, Diethelm T1 - Seismic hazard harmonisation in Europe (SHARE) : DGEB-Workshop in Frankfurt a.M., Germany, 27. May 2014 / Christoph Butenweg, Diethelm Kaiser (editors) Y1 - 2014 SN - 3-930108-12-7 PB - DGEB CY - Aachen ER - TY - CHAP A1 - Butenweg, Christoph A1 - Kleemann, Anne A1 - Altay, Okyay A1 - Renault, Philippe T1 - Simulation of impact-loads on reinforced concrete structural elements T2 - 22nd International Conference on Structural Mechanics in Reactor Technology 2013 : (SMiRT 22) ; San Francisco, California, USA, 18 - 23 August 2013 Y1 - 2013 SP - 1 EP - 10 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Kuhlmann, Winfried A1 - Lopez, M. A1 - Fernandez, S. T1 - Seismic vulnerability assessment of the Aachen Cathedral based on measurements and numerical simulations T2 - International Conference on Earthquake Engineering to mark 40 years from Catastrophic 1963 Skopje Earthquake, Skopje 2003 Y1 - 2003 SP - 1 EP - 8 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinkovic, Marko T1 - Damage reduction system for masonry infill walls under seismic loading T2 - ce/papers N2 - Reinforced concrete (RC) frames with masonry infills are frequently used in seismic regions all over the world. Generally masonry infills are considered as nonstructural elements and thus are typically neglected in the design process. However, the observations made after strong earthquakes have shown that masonry infills can modify the dynamic behavior of the structure significantly. The consequences were total collapses of buildings and loss of human lives. This paper presents the new system INODIS (Innovative Decoupled Infill System) developed within the European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in RC Buildings). INODIS decouples the frame and the masonry infill by means of special U-shaped rubbers placed in between frame and infill. The effectiveness of the system was investigated by means of full scale tests on RC frames with masonry infills subjected to in-plane and out-of-plane loading. Furthermore small specimen tests were conducted to determine material characteristics of the components and the resistances of the connections. Finally, a micromodel was developed to simulate the in-plane behavior of RC frames infilled with AAC blocks with and without installation of the INODIS system. KW - earthquakes KW - in-plane and out-of-plane failure KW - INODIS KW - RC frames Y1 - 2018 U6 - http://dx.doi.org/10.1002/cepa.863 N1 - Special Issue: ICAAC ‐ 6th International Conference on Autoclaved Aerated Concrete VL - 2 IS - 4 SP - 267 EP - 273 PB - Ernst & Sohn Verlag CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Kubalski, Thomas T1 - Experimental and Numerical Investigations of Reinforced Concrete Frames with Masonry Infills under Combined In- and Out-of-plane Seismic Loading T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11477 SP - 1 EP - 12 ER - TY - JOUR A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Kubalski, Thomas A1 - Klinkel, Sven T1 - Masonry infilled reinforced concrete frames under horizontal loading T1 - Stahlbetonrahmen mit Ausfachungen aus Mauerwerk unter horizontalen Belastungen JF - Mauerwerk N2 - The behaviour of infilled reinforced concrete frames under horizontal load has been widely investigated, both experimentally and numerically. Since experimental tests represent large investments, numerical simulations offer an efficient approach for a more comprehensive analysis. When RC frames with masonry infill walls are subjected to horizontal loading, their behaviour is highly non-linear after a certain limit, which makes their analysis quite difficult. The non-linear behaviour results from the complex inelastic material properties of the concrete, infill wall and conditions at the wall-frame interface. In order to investigate this non-linear behaviour in detail, a finite element model using a micro modelling approach is developed, which is able to predict the complex non-linear behaviour resulting from the different materials and their interaction. Concrete and bricks are represented by a non-linear material model, while each reinforcement bar is represented as an individual part installed in the concrete part and behaving elasto-plastically. Each brick is modelled individually and connected taking into account the non-linearity of a brick mortar interface. The same approach is followed using two finite element software packages and the results are compared with the experimental results. The numerical models show a good agreement with the experiments in predicting the overall behaviour, but also very good matching for strength capacity and drift. The results emphasize the quality and the valuable contribution of the numerical models for use in parametric studies, which are needed for the derivation of design recommendations for infilled frame structures. Y1 - 2016 U6 - http://dx.doi.org/10.1002/dama.201600703 SN - 1437-1022 VL - 20 IS - 4 SP - 305 EP - 312 PB - Ernst & Sohn CY - Berlin ER - TY - JOUR A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Salatic, Ratko T1 - Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading JF - Bulletin of Earthquake Engineering Y1 - 2019 U6 - http://dx.doi.org/10.1007/s10518-019-00602-7 SN - 1573-1456 VL - 17 SP - 3397 EP - 3422 PB - Springer CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Pavese, Alberto A1 - Lanese, Igor A1 - Hoffmeister, Benno A1 - Pinkawa, Marius A1 - Vulcu, Mihai-Cristian A1 - Bursi, Oreste A1 - Nardin, Chiara A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca A1 - Fragiadakis, Michalis A1 - Weber, Felix A1 - Huber, Peter A1 - Renault, Philippe A1 - Gündel, Max A1 - Dyke, Shirley A1 - Ciucci, M. A1 - Marino, A. T1 - Seismic performance of multi-component systems in special risk industrial facilities T2 - 17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Meyer, Udo A1 - Fehling, Ekkehard T1 - INSYSME: first activities of the German partners T2 - 9th International Masonry Conference 2014 in Guimaraes, Portugal, 2014 Y1 - 2014 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Mistler, Michael T1 - Seismic resistance of unreinforced masonry buildings T2 - Proceedings of the Eighth International Conference on Computational Structures Technology : [Las Palmas de Cran Canaria, 12-15 September 2006] / ed. by B. H. V. Topping ... Y1 - 2006 SN - 1-905088-06-X U6 - http://dx.doi.org/10.4203/ccp.83.9 SP - Paper 9 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Butenweg, Christoph A1 - Norda, Hannah ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Nonlinear analysis of masonry structures according to Eurocode 8 T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Butenweg, Christoph A1 - Rajan, Sreelakshmy T1 - Design and construction techniques of AAC masonry buildings in earthquakes regions T2 - 10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014 Y1 - 2014 ER - TY - JOUR A1 - Butenweg, Christoph A1 - Rosin, Julia A1 - Holler, Stefan T1 - Analysis of cylindrical granular material silos under seismic excitation JF - Buildings N2 - Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil–structure interaction effects are taken into account. KW - granular silo KW - earthquake engineering KW - hypoplasticity KW - nonlinear transient analyses Y1 - 2017 U6 - http://dx.doi.org/10.3390/buildings7030061 SN - 2075-5309 VL - 7 IS - 3 SP - 1 EP - 12 PB - MDPI CY - Basel ER - TY - CHAP A1 - Butenweg, Christoph A1 - Rosin, Julia A1 - Kubalski, Thomas T1 - Seismic response of conventional and base-isolated liquid storage tanks T2 - International Conference on Earthquake Engineering : 29.-31.05.2013, Skopje, Mazedonien Y1 - 2013 SP - 1 EP - 8 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Thierauf, G. ED - Papadrakakis, M. ED - Topping, B.H.V. T1 - Automatic design of reinforced concrete structures with parallel computing T2 - Innovative computational methods for structural mechanics N2 - A concept for the analysis and optimal design of reinforced concrete structures is described. It is based on a nonlinear optimization algorithm and a finite element program for linear and nonlinear analysis of structures. With the aim of minimal cost design a two stage optimization using efficient gradient algorithm is developed. The optimization problems on global (structural) and local (crosssectional) level are formulated. A parallelization concept for solving the two stage optimization problem in minimal time is presented. Examples are included to illustrate the practical use and the effectively of the parallelization in the area of engineering design. Y1 - 1999 SN - 1-874672-05-9 U6 - http://dx.doi.org/10.4203/csets.1.14 SP - 305 EP - 318 PB - Saxe-Coburg Publication CY - Edinburgh ER - TY - CHAP A1 - Butenweg, Christoph A1 - Thierauf, Georg T1 - Optimum cost design of reinforced concrete structures using parallel computing T2 - Advances in computational mechanics with parallel and distributed processing : research papers presented at The First Euro-Conference on Parallel and Distributed Computing for Computational Mechanics, held at Lochinver, Scotland, between 26 April and 1 May 1997 / ed. by B. H. V. Topping Y1 - 1997 SN - 0-948749-47-4 SP - 197 EP - 202 PB - Saxe-Coburg Publication CY - Edinburgh ER - TY - CHAP A1 - Butenweg, Christoph A1 - Thierauf, Georg T1 - Optimum design of reinforced concrete structures T2 - Advances in computational structural mechanics : this volume contains a selection of papers presented at The First International Conference on Engineering Computational Technology and The Fourth International Conference on Computational Structures Technology, held in Edinburgh from 18-21 August 1998 / edited by B. H. V. Topping Y1 - 1998 SN - 0-948749-57-1 SP - 447 EP - 458 PB - Civil-Comp Press CY - Edinburgh ER - TY - CHAP A1 - Cacciatore, Pamela A1 - Butenweg, Christoph T1 - Seismic safety of cylindrical granular material steel silos under seismic loading T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 231 EP - 244 ER - TY - CHAP A1 - Chudoba, Rostislav A1 - Butenweg, Christoph A1 - Kuhlmann, Wolfram T1 - Technical information system for collaborative material research T2 - Sixth International Conference on Computational Structures Technology : [Prague, Czech Republic, 4 - 6 September 2002] Y1 - 2002 SP - 1 EP - 11 ER - TY - JOUR A1 - Chudoba, Rostislav A1 - Butenweg, Christoph A1 - Peiffer, F. T1 - Technical information system for collaborative material research JF - Advances in engineering software Y1 - 2004 U6 - http://dx.doi.org/10.1016/j.advengsoft.2004.03.021 SN - 1873-5339 (E-Journal); 0965-9978 (Print) VL - Volume 35 IS - Issue 10-11 SP - 747 EP - 756 ER - TY - CHAP A1 - Chudoba, Rostislav A1 - Butenweg, Christoph A1 - Pfeiffer, Frank T1 - Textile reinforced concrete. Part I: Process model for collaborative research and development T2 - Digital proceedings / IKM 2003, proceedings 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering [Elektronische Ressource : 10. - 12. Juni 2003, Weimar] / Bauhaus-Universität Weimar. Ed.: K. Gürlebeck; L. Hempel; C. Könke Y1 - 2003 SP - 1 EP - 8 PB - IKM CY - Weimar ER - TY - CHAP A1 - Churilov, Sergej A1 - Dumova-Jovanoska, Elena A1 - Butenweg, Christoph ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) N2 - A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia. Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Dalguer, Luis A. A1 - Churilov, Sergey A1 - Butenweg, Christoph A1 - Renault, Philippe A1 - Hyun, An Jun T1 - Dynamic analysis of a reinforced concrete electrical nuclear building of SMART 2013 project subjected to earthquake excitation using ABAQUS T2 - Workshop SMART2013 : Paris, France, November 25th - 27th, 2014 Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Dalguer, Luis A. A1 - Renault, Philippe A1 - Churilov, Sergey A1 - Butenweg, Christoph T1 - Evaluation of fragility curves for a three-storey-reinforced-concrete mock-up of SMART 2013 project T2 - Transactions, SMiRT-23 : 23rd Conference on Structural Mechanics in Reactor Technology : Manchester, United Kingdom - August 10-14, 2015 Y1 - 2016 SP - 1 EP - 9 ER - TY - JOUR A1 - Edip, K. A1 - Sesov, V. A1 - Butenweg, Christoph A1 - Bojadjieva, J. T1 - Development of coupled numerical model for simulation of multiphase soil JF - Computers and Geotechnics N2 - In this paper, a coupled multiphase model considering both non-linearities of water retention curves and solid state modeling is proposed. The solid displacements and the pressures of both water and air phases are unknowns of the proposed model. The finite element method is used to solve the governing differential equations. The proposed method is demonstrated through simulation of seepage test and partially consolidation problem. Then, implementation of the model is done by using hypoplasticity for the solid phase and analyzing the fully saturated triaxial experiments. In integration of the constitutive law error controlling is improved and comparisons done accordingly. In this work, the advantages and limitations of the numerical model are discussed. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.compgeo.2017.08.016 SN - 0266-352X VL - 96 SP - 118 EP - 131 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Edip, Kemal A1 - Garevski, Mihail A1 - Butenweg, Christoph A1 - Sesov, Vlatko A1 - Bojadjieva, Julijana A1 - Gjorgjiev, Igor T1 - Boundary effects on seismic analysis of multi-storey frames considering soil structure interaction phenomenon T2 - Seismic design of industrial facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) ; [Aachen, 26. - 27. September 2013] / Chair of Structural Statics and Dynamics, RWTH Aachen. Sven Klinkel ..., ed Y1 - 2014 SN - 978-3-658-02809-1 (Print) ; 978-3-658-02810-7 U6 - http://dx.doi.org/10.1007/978-3-658-02810-7_47 SP - 569 EP - 576 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Edip, Kemal A1 - Garevski, Mihail A1 - Butenweg, Christoph A1 - Sesov, Vlatko A1 - Cvetanovska, Julijana A1 - Gjorgiev, Igor T1 - Numerical simulation of geotechnical problems by coupled finite and infinite elements JF - Journal of civil engineering and architecture Y1 - 2013 SN - 1934-7359 (E-Journal) VL - 7 IS - 1 SP - 68 EP - 77 PB - David Publishing CY - Libertyville ER - TY - CHAP A1 - Edip, Kemal A1 - Garevski, Mihail A1 - Butenweg, Christoph A1 - Sheshov, Vlatko A1 - Bojadjieva, Julijana A1 - Gjorgjiev, Igor T1 - New coupled finite-infinite element approach for wave propagation simulation of unbounded soil media T2 - 2nd European Conference on Earthquake Engineering and Seismology 2014 (2nd ECEES) : joint event of the 15th European Conference on Earthquake Engineering and the 34th General Assembly of the European Seismological Commission : Istanbul, Turkey, 25-29 August 2014 / European Association for Earthquake Engineering (EAEE) ; Vol. 2 Y1 - 2014 SN - 978-1-5108-1021-1 SP - 1556 EP - 1561 PB - Curran Associates, Inc. CY - Red Hook, NY ER - TY - CHAP A1 - El-Deib, Khaled A1 - Chudoba, Rostislav A1 - Butenweg, Christoph A1 - Meskouris, Konstantin A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Safety assessment of rockfill and masonry dams T2 - Structural dynamics - EURODYN 2002 : proceedings of the 4th [i.e. 5th] International Conference on Structural Dynamics, Munich, Germany, 2 - 5 September 2002 / ed. by H. Grundmann ... Vol. 1 Y1 - 2002 SN - 90-5809-510-X SP - 237 EP - 242 PB - Balkema CY - Lisse ER - TY - CHAP A1 - Frauenrath, Tobias A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Otten, Mario A1 - Niendorf, Thoralf T1 - 3D mapping of vocal fold geometry during articulatory maneuvers using ultrashort echo time imaging at 3.0 T T2 - ISMRM-ESMRMB joint annual meeting 2010 : Stockholm, Sweden, 1 - 7 May 2010. Band 4 Y1 - 2010 SN - 978-1-617-82008-3 SP - 3087 PB - Curran CY - Red Hook, NY ER - TY - JOUR A1 - Frauenrath, Tobias A1 - Hezel, Fabian A1 - Heinrichs, Uwe A1 - Kozerke, Sebastian A1 - Utting, Jane A1 - Kob, Malte A1 - Butenweg, Christoph A1 - Boesiger, Peter A1 - Niendorf, Thoralf T1 - Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope JF - Investigative Radiology KW - phonocardiogram KW - electrocardiogram KW - cardiac gating KW - high field MR imaging KW - cardiovascular MR imaging Y1 - 2009 U6 - http://dx.doi.org/10.1097/RLI.0b013e3181b4c15e SN - 1536-0210 (online) SN - 0020-9996 (gedruckt) VL - 44 IS - 9 SP - 539 EP - 547 PB - Lippincott Williams & Wilkins ; (via Ovid) CY - Philadelphia, Pa ER - TY - CHAP A1 - Gellert, Christoph A1 - Norda, Hannah A1 - Butenweg, Christoph T1 - Nonlinear behaviour of masonry under cyclic loading T2 - 7th European Conference on Structural Dynamics, EURODYN 2008 : 7-9 July 2008, Southampton Y1 - 2008 SP - 1 EP - 12 ER - TY - CHAP A1 - Gellert, Christoph A1 - Park, Jin A1 - Butenweg, Christoph T1 - Seismic safety verification of masonry structures T2 - Proceedings of the Eight International Masonry Conference : held in Dresden from 4th to 7th of July 2010 / [International Masonry Society ; Technische Universität Dresden]. Ed. by: Wolfram Jäger ... Volume 1. (Masonry / International Masonry Society Special Publication ; 11) Y1 - 2010 SN - 978-3-00-031381-3 SP - 813 EP - 822 PB - ARGE 8IMC Dresden CY - Radebeul ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph T1 - Earthquake resistant design of structures according to Eurocode 8 T2 - Structural Dynamics with Applications in Earthquake and Wind Engineering N2 - The chapter initially provides a summary of the contents of Eurocode 8, its aim being to offer both to the students and to practising engineers an easy introduction into the calculation and dimensioning procedures of this earthquake code. Specifically, the general rules for earthquake-resistant structures, the definition of design response spectra taking behaviour and importance factors into account, the application of linear and non-linear calculation methods and the structural safety verifications at the serviceability and ultimate limit state are presented. The application of linear and non-linear calculation methods and corresponding seismic design rules is demonstrated on practical examples for reinforced concrete, steel and masonry buildings. Furthermore, the seismic assessment of existing buildings is discussed and illustrated on the example of a typical historical masonry building in Italy. The examples are worked out in detail and each step of the design process, from the preliminary analysis to the final design, is explained in detail. KW - Seismic design KW - Eurocode 8 KW - Design examples KW - Response spectrum KW - Pushover analysis Y1 - 2019 SN - 978-3-662-57550-5 (Online) SN - 978-3-662-57548-2 (Print) U6 - http://dx.doi.org/10.1007/978-3-662-57550-5_4 SP - 197 EP - 358 PB - Springer CY - Berlin ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph A1 - Andreini, M. A1 - De Falco, A. A1 - Sassu, M. T1 - Numerical calibration of a macro-element for vaultes system in historic churches T2 - 9th International Conference on Structural Analyses of Historical Conctruction, 14 - 17 October, 2014, Mexico City Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph A1 - Andreini, M. A1 - De Falco, A. A1 - Sassu, M. T1 - Macro-elements identification in historic chapels: the case of St. Venerio Chapel in Reggiolo - Emilia Romagna T2 - 9th International Conference on Structural Analyses of Historical Conctruction, 14 - 17 October, 2014, Mexico City Y1 - 2014 SP - 1 EP - 12 ER - TY - JOUR A1 - Giresini, Linda A1 - Sassu, Mauro A1 - Butenweg, Christoph A1 - Alecci, Valerio A1 - De Stefano, Mario T1 - Vault macro-element with equivalent trusses in global seismic analyses JF - Earthquakes and Structures N2 - This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports. KW - vault KW - macro-element KW - equivalent stiffness KW - truss KW - churches Y1 - 2017 U6 - http://dx.doi.org/10.12989/eas.2017.12.4.409 SN - 2092-7614 (Print) SN - 2092-7622 (Online) VL - 12 IS - 4 SP - 409 EP - 423 PB - Techno-Press CY - Taejŏn ER - TY - CHAP A1 - Gkatzogias, Konstantinos A1 - Veljkoviv, Ana A1 - Pohoryles, Daniel A. A1 - Tsionis, Georgios A1 - Bournas, Dionysios A. A1 - Crowley, Helen A1 - Norlén, Hedvig A1 - Butenweg, Christoph A1 - Gervasio, Helena A1 - Manfredi, Vincenzo A1 - Masi, Angelo A1 - Zaharieva, Roumiana ED - Gkatzogias, Konstantinos ED - Tsionis, Georgios T1 - Policy practice and regional impact assessment for building renovation T2 - REEBUILD Integrated Techniques for the Seismic Strengthening & Energy Efficiency of Existing Buildings N2 - The work presented in this report provides scientific support to building renovation policies in the EU by promoting a holistic point of view on the topic. Integrated renovation can be seen as a nexus between European policies on disaster resilience, energy efficiency and circularity in the building sector. An overview of policy measures for the seismic and energy upgrading of buildings across EU Member States identified only a few available measures for combined upgrading. Regulatory framework, financial instruments and digital tools similar to those for energy renovation, together with awareness and training may promote integrated renovation. A framework for regional prioritisation of building renovation was put forward, considering seismic risk, energy efficiency, and socioeconomic vulnerability independently and in an integrated way. Results indicate that prioritisation of building renovation is a multidimensional problem. Depending on priorities, different integrated indicators should be used to inform policies and accomplish the highest relative or most spread impact across different sectors. The framework was further extended to assess the impact of renovation scenarios across the EU with a focus on priority regions. Integrated renovation can provide a risk-proofed, sustainable, and inclusive built environment, presenting an economic benefit in the order of magnitude of the highest benefit among the separate interventions. Furthermore, it presents the unique capability of reducing fatalities and energy consumption at the same time and, depending on the scenario, to a greater extent. Y1 - 2022 SN - 978-92-76-60454-9 U6 - http://dx.doi.org/10.2760/883122 SN - 1831-9424 SP - 1 EP - 68 PB - Publications Office of the European Union CY - Luxembourg ER - TY - CHAP A1 - Grunendahl, A. A1 - de Rochefort, E. A1 - Butenweg, Christoph T1 - Numerical models for investigating the causes of low back pain due to whole-body vibrations T2 - 2nd International Conference on Computational Bioengineering : Lisbon, September 14-16 2005. Volume 2. Y1 - 2005 SN - 978-972-8469-37-3 SP - 905 EP - 914 PB - IST Press CY - Lisbon ER - TY - CHAP A1 - Gömmel, A. A1 - Butenweg, Christoph A1 - Kob, M. T1 - A fluid-structure interaction model of vocal fold oscillation T2 - 5th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2007 N2 - Since fluid-structure interaction within the finite-element method is state of the art in many engineering fields, this method is used in voice analysis. A quasi two-dimensional model of the vocal folds including the ventricular folds is presented. First results of self-sustained vocal fold oscillation are presented and possibilities as well as limitations are discussed. KW - finite element method KW - fluid structure interaction KW - vocal fold oscillation Y1 - 2007 SN - 978-888453674-7 N1 - 5th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2007; Florence; Italy; 13 December 2007 through 15 December 2007 SP - 127 EP - 128 ER - TY - JOUR A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Bolender, Katrin A1 - Grunendahl, Arno T1 - A muscle controlled finite-element model of laryngeal abduction and adduction JF - Computer methods in biomechanics and biomedical engineering Y1 - 2007 SN - 1476-8259 (E-Journal); 1025-5842 (Print) VL - Volume 10 IS - Issue 5 SP - 377 EP - 388 ER - TY - CHAP A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Kob, Malte T1 - Towards a complete finite-element model of human phonation: modeling phonatory maneuvers T2 - 12th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields : Ulm, Germany, 20 - 21 July 2005 / University of Ulm, Department of Orthodontics ... Y1 - 2005 SN - 978-3-9806183-8-0 PB - Univ., Dep. of Orthodontics CY - Ulm ER - TY - CHAP A1 - Gömmel, Andreas A1 - Kob, Malte A1 - Niendorf, Thoralf A1 - Butenweg, Christoph T1 - An approach for numerical calculation of glottal flow during glottal closure T2 - Proceedings / NAG/DAGA 2009, International Conference on Acoustics : Rotterdam, 23 - 26 March 2009 ; [including the 35th German Annual Conference on Acoustics (DAGA)] / [organisers: Acoustical Society of the Netherlands (NAG); German Acoustical Society (DEGA) ...]. Ed. by Marinus M. Boone Y1 - 2009 SN - 978-3-9808659-6-8 SP - 1722 EP - 1725 PB - DEGA CY - Berlin ER - TY - CHAP A1 - Gömmel, Andreas A1 - Krämer, Sebastian A1 - Butenweg, Christoph A1 - Kob, Malte T1 - A combined FE and multiple-mass model for numerical simulation of phonatory maneuvers T2 - Proceedings / Forum Acusticum, Budapest, 29 Aug - 2 Sep, 2005 : [Acoustics: science and technology for knowledge based society and healthy environment] / ed. by: Fülöp Augusztinovicz ... Y1 - 2005 SN - 978-963-8241-68-9 SP - 2759 EP - 2764 PB - OPAKFI Tud. Egyesület CY - Budapest ER - TY - CHAP A1 - Gömmel, Andreas A1 - Niendorf, Thoralf A1 - Frauenrath, Tobias A1 - Otten, Mario A1 - Butenweg, Christoph A1 - Kob, Malte T1 - 3D vocal fold geometry mapping using Magnetic Resonance Imaging T2 - Fortschritte der Akustik : 36. Deutsche Jahrestagung für Akustik ; 15.-18. März 2010, [Berlin ; DAGA 2010] / DEGA ... Wiss. Ed. Michael Möser ... Band 1 Y1 - 2010 SN - 978-3-9808659-8-2 SP - 271 EP - 272 PB - Deutsche Gesellschaft für Akustik CY - Berlin ER - TY - JOUR A1 - Holler, S. A1 - Butenweg, Christoph A1 - Noh, S.-Y. A1 - Meskouris, Konstantin T1 - Computational model of textile-reinforced concrete structures JF - Computers & structures : an international journal Y1 - 2004 U6 - http://dx.doi.org/10.1016/j.compstruc.2004.03.076 SN - 1879-2243 (E-Journal); 0045-7949 (Print) VL - Volume 82 IS - Issues 23-26 SP - 1971 EP - 1979 ER - TY - CHAP A1 - Holler, S. A1 - Butenweg, Christoph A1 - Noh, S.-Y. A1 - Meskouris, Konstantin T1 - Numerical simulation of textile-reinforced concrete structures T2 - Proceedings of the Sixth International Conference on Computational Structures Technology : [Prague, Czech Republic, 4 - 6 September 2002] / ed. by B. H. V. Topping and Z. Bittnar. (Civil-Comp Press books on computational engineering) Y1 - 2002 SN - 0-948749-83-0 SP - 287 EP - 288 PB - Civil-Comp Press CY - Stirling ER - TY - JOUR A1 - Holtschoppen, Britta A1 - Butenweg, Christoph A1 - Meskouris, Konstantin T1 - Seismic design of non-structural components in industrial facilities JF - International journal of engineering under uncertainty Y1 - 2009 SN - 0975-4806 VL - Volume 1 SP - 1 EP - 13 ER - TY - CHAP A1 - Kalker, Ines A1 - Neumann, M. A1 - Butenweg, Christoph A1 - Holler, Stefan T1 - Modelling of textile strengthened masonry T2 - Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping Y1 - 2005 SN - 1-905088-00-0 U6 - http://dx.doi.org/10.4203/ccp.81.184 SP - 447 EP - 448 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Kalker, Ines A1 - Toll, B. A1 - Holler, Stefan A1 - Butenweg, Christoph A1 - Topping, B. H. V. A1 - Mota Soares, C. A. T1 - Capacity analysis of textile retrofitted unreinforced masonry T2 - Proceedings of the Seventh International Conference on Computational Structures Technology : [Lisbon, Portugal, 7 - 9 September 2004] / ed. by B. H. V. Topping ... Y1 - 2004 SN - 0-948749-95-4 U6 - http://dx.doi.org/10.4203/ccp.79.194 SP - 431 EP - 432 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Karimi, Iman A1 - Butenweg, Christoph A1 - Toll, Britta T1 - Vulnerability assessment of industrial facilities T2 - Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping Y1 - 2005 SN - 1-905088-00-0 U6 - http://dx.doi.org/10.4203/ccp.81.34 SP - 34, 73 EP - 75 PB - Civil-Comp Press CY - Stirling ER - TY - JOUR A1 - Klein, Michel A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines JF - Procedia Engineering Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.proeng.2017.09.325 SN - 1877-7058 VL - 199 SP - 3218 EP - 3223 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Klinkel, Sven A1 - Butenweg, Christoph A1 - Lin, Gao A1 - Holtschoppen, Britta T1 - Seismic design of industrial facilities : Proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF) / Sven Klinkel, Christoph Butenweg, Gao Lin, Britta Holtschoppen Editors Y1 - 2014 SN - 978-3-658-02809-1 (Print) ; 978-365-80281-0-7 (E-Book) U6 - http://dx.doi.org/10.1007/978-3-658-02810-7 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Kob, Malte A1 - Butenweg, Christoph T1 - A finite element model of the interaction between intra-and extralaryngeal muscles T2 - International Conference on Voice Physiology and Biomechanics, August 18-20, 2004, Marseille, France Y1 - 2004 SP - 1 EP - 2 ER - TY - CHAP A1 - Kob, Malte A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Niendorf, Thoralf T1 - Training of a combined model of larynx and vocal folds with data from MRI measurements T2 - The 5th International Conference on Voice Physiology and Biomechanics: Variations across Cultures and Species, July 12-14, 2006, Tokyo, Japan. Proceedings Y1 - 2006 SP - 45 EP - 46 ER - TY - CHAP A1 - Konrad, M. A1 - Chudoba, Rostislav A1 - Butenweg, Christoph A1 - Bruckermann, O. T1 - Textile reinforced concrete. Part II: Multi-level modeling concept T2 - Digital proceedings / IKM 2003, proceedings 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering [Elektronische Ressource : 10. - 12. Juni 2003, Weimar] / Bauhaus-Universität Weimar. Ed.: K. Gürlebeck; L. Hempel; C. Könke Y1 - 2003 SP - 1 EP - 11 PB - IKM CY - Weimar ER - TY - CHAP A1 - Kubalski, T. A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Klinkel, S. T1 - Investigation Of The Seismic Behaviour Of Infill Masonry Using Numerical Modelling Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Masonry is a widely spread construction type which is used all over the world for different types of structures. Due to its simple and cheap construction, it is used as non-structural as well as structural element. In frame structures, such as reinforced concrete frames, masonry may be used as infill. While the bare frame itself is able to carry the loads when it comes to seismic events, the infilled frame is not able to warp freely due to the constrained movement. This restraint results in a complex interaction between the infill and the surrounding frame, which may lead to severe damage to the infill as well as the surrounding frame. The interaction is studied in different projects and effective approaches for the description of the behavior are still lacking. Experimental programs are usually quite expensive, while numerical models, once validated, do offer an efficient approach for the investigation of the interaction when horizontally loaded. In order to study the numerous parameters influencing the seismic load bearing behavior, numerical models may be used. Therefore, this contribution presents a numerical approach for the simulation of infill masonry in reinforced concrete frames. Both parts, the surrounding frame as well as the infill are represented by micro modelling approaches to correctly take into account the different types of failure. The adopted numerical model describes the inelastic behavior of the system, as indicated by the obtained results of the overall structural response as well as the formation of damage in the infilled wall. Comparison of the numerical and experimental results highlights the valuable contribution of numerical simulations in the study and design of infilled frames. As damage of the infill masonry may occur in-plane due to the interaction as well as out-of-plane due to the low vertical load, both directions of loading are investigated. Y1 - 2017 N1 - Paper No 3064 SP - 1 EP - 11 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Kubalski, T. A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Modena, Claudio T1 - Numerical investigation of masonry infilled R.C. frames T2 - Brick and Block Masonry. Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016 Y1 - 2016 SN - 9781315374963 SP - 1219 EP - 1226 PB - CRC Press CY - Leiden ER - TY - CHAP A1 - Kuhlmann, Wolfram A1 - Butenweg, Christoph A1 - Lopez, Marijen A1 - Fernandez, Sebastian T1 - Seismic vulnerability assessment of the historic Aachen Cathedral T2 - Conference proceedings / 13th World Conference on Earthquake Engineering [Vancouver, British Columbia, Canada, August 1 - 6, 2004] / [hosted by CAEE/ACGP, Canadian Association for Earthquake Engineering] Y1 - 2004 SP - 1 EP - 14 PB - CAEE CY - Vancouver ER - TY - CHAP A1 - Lu, S. A1 - Beyer, K. A1 - Bosiljkov, V. A1 - Butenweg, Christoph A1 - D’Ayala, D. A1 - Degee, H. A1 - Gams, M. A1 - Klouda, J. A1 - Lagomarsino, S. A1 - Penna, A. A1 - Mojsilovic, N. A1 - da Porto, F. A1 - Sorrentino, L. A1 - Vintzileou, E. ED - Modena, Claudio ED - da Porto, F. ED - Valluzzi, M.R. T1 - Next generation of Eurocode 8, masonry chapter T2 - Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016 N2 - This paper describes the procedure on the evaluation of the masonry chapter for the next generation of Eurocode 8, the European Standard for earthquake-resistant design. In CEN, TC 250/SC8, working group WG 1 has been established to support the subcommittee on the topic of masonry on both design of new structures (EN1998-1) and assessment of existing structures (EN1998-3). The aim is to elaborate suggestions for amendments which fit the current state of the art in masonry and earthquake-resistant design. Focus will be on modelling, simplified methods, linear-analysis (q-values, overstrength-values), nonlinear procedures, out-of-plane design as well as on clearer definition of limit states. Beside these, topics related to general material properties, reinforced masonry, confined masonry, mixed structures and non-structural infills will be covered too. This paper presents the preliminary work and results up to the submission date. Y1 - 2016 SN - 978-1-138-02999-6 (Print) SN - 9781315374963 (E-Book) SP - 695 EP - 700 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames JF - Engineering Structures Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.engstruct.2019.109435 SN - 0141-0296 VL - 197 IS - Article 109435 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Innovative System for Earthquake Resistant Masonry Infill Walls T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11479 SP - 1 EP - 12 ER - TY - CHAP A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays T2 - 17th International Conference -From historical to sustainable masonry, Krakow, Poland, July 5-8, 2020 Y1 - 2020 U6 - http://dx.doi.org/10.1201/9781003098508-72 SP - 1 EP - 7 ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Ford, Michael C. T1 - Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading JF - Construction and Building Materials N2 - Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated. KW - Masonry infill KW - Reinforced concrete frame KW - Earthquake KW - INSYSME KW - Decoupling Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.conbuildmat.2021.126041 SN - 1879-0526 SN - 0950-0618 VL - 318 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental and numerical analysis of RC frames with decoupled masonry infills T2 - 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Masonry infill walls are commonly used in reinforced concrete (RC) frame structures, also in seismically active areas, although they often experience serious damage during earthquakes. One of the main reasons for their poor behaviour is the connection to the frame, which is usually constructed using mortar. This paper describes the novel solution for infill/frame connection based on application of elastomeric material between them. The system called INODIS (Innovative Decoupled Infill System) has the aim to postpone the activation of infill in in-plane direction and at the same time to provide sufficient out-of-plane support. First, experimental tests on infilled frame specimens are presented and the comparison of the results between traditionally infilled frames and infilled frames with the INODIS system are given. The results are then used for calibration and validation of numerical model, which can be further employed for investigating the influence of some material parameters on the behaviour of infilled frames with the INODIS system. KW - Earthquake KW - In-plane KW - Out-of-plane KW - Isolation KW - Seismic Y1 - 2019 SN - 978-618-82844-5-6 U6 - http://dx.doi.org/10.7712/120119.7088.18845 SN - 2623-3347 N1 - COMPDYN 2019, 24-26 June 2019, Crete, Greece. SP - 2464 EP - 2479 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Marinković, Marko A1 - Butenweg, Christoph T1 - Out-of-plane behavior of decoupled masonry infills under seismic loading T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - Masonry is used in many buildings not only for load-bearing walls, but also for non-load-bearing enclosure elements in the form of infill walls. Many studies confirmed that infill walls interact with the surrounding reinforced concrete frame, thus changing dynamic characteristics of the structure. Consequently, masonry infills cannot be neglected in the design process. However, although the relevant standards contain requirements for infill walls, they do not describe how these requirements are to be met concretely. This leads in practice to the fact that the infill walls are neither dimensioned nor constructed correctly. The evidence of this fact is confirmed by the recent earthquakes, which have led to enormous damages, sometimes followed by the total collapse of buildings and loss of human lives. Recently, the increasing effort has been dedicated to the approach of decoupling of masonry infills from the frame elements by introducing the gap in between. This helps in removing the interaction between infills and frame, but raises the question of out-of-plane stability of the panel. This paper presents the results of the experimental campaign showing the out-of-plane behavior of masonry infills decoupled with the system called INODIS (Innovative decoupled infill system), developed within the European project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings). Full scale specimens were subjected to the different loading conditions and combinations of in-plane and out-of-plane loading. Out-of-plane capacity of the masonry infills with the INODIS system is compared with traditionally constructed infills, showing that INODIS system provides reliable out-of-plane connection under various loading conditions. In contrast, traditional infills performed very poor in the case of combined and simultaneously applied in-plane and out-of-plane loading, experiencing brittle behavior under small in-plane drifts followed by high out-of-plane displacements. Decoupled infills with the INODIS system have remained stable under out-of-plane loads, even after reaching high in-plane drifts and being damaged. KW - in-plane KW - out-of-plane KW - INODIS KW - earthquake KW - connection detail Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Markinkovic, Marko A1 - Butenweg, Christoph A1 - Pavese, A. A1 - Lanese, I. A1 - Hoffmeister, B. A1 - Pinkawa, M. A1 - Vulcu, C. A1 - Bursi, O. A1 - Nardin, C. A1 - Paolacci, F. A1 - Quinci, G. A1 - Fragiadakis, M. A1 - Weber, F. A1 - Huber, P. A1 - Renault, P. A1 - Gündel, M. A1 - Dyke, S. A1 - Ciucci, M. A1 - Marino, A. T1 - Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 159 EP - 172 ER - TY - BOOK A1 - Meskouris, Konstantin A1 - Butenweg, Christoph A1 - Hinzen, Klaus-G. A1 - Höffer, Rüdiger T1 - Structural Dynamics with Applications in Earthquake and Wind Engineering Y1 - 2019 SN - 978-3-662-57550-5 U6 - http://dx.doi.org/10.1007/978-3-662-57550-5 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Butenweg, Christoph A1 - Hinzen, Klaus-G. A1 - Höffer, Rüdiger T1 - Stochasticity of Wind Processes and Spectral Analysis of Structural Gust Response T2 - Structural Dynamics with Applications in Earthquake and Wind Engineering N2 - Wind loads have great impact on many engineering structures. Wind storms often cause irreparable damage to the buildings which are exposed to it. Along with the earthquakes, wind represents one of the most common environmental load on structures and is relevant for limit state design. Modern wind codes indicate calculation procedures allowing engineers to deal with structural systems, which are susceptible to conduct wind-excited oscillations. In the codes approximate formulas for wind buffeting are specified which relate the dynamic problem to rather abstract parameter functions. The complete theory behind is not visible in order to simplify the applicability of the procedures. This chapter derives the underlying basic relations of the spectral method for wind buffeting and explains the main important applications of it in order to elucidate part of the theoretical background of computations after the new codes. The stochasticity of the wind processes is addressed, and the analysis of analytical as well as measurement based power spectra is outlined. Short MATLAB codes are added to the Appendix 3 which carry out the computation of a single sided auto-spectrum from a statistically stationary, discrete stochastic process. Two examples are presented. KW - Wind turbulence KW - Gust wind response KW - Spectral analysis Y1 - 2019 SN - 978-3-662-57550-5 (Online) SN - 978-3-662-57548-2 (Print) U6 - http://dx.doi.org/10.1007/978-3-662-57550-5_3 SP - 153 EP - 196 PB - Springer CY - Berlin ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Butenweg, Christoph A1 - Kalker, Ines A1 - Mistler, Michael T1 - Numerical simulation of historic masonry buildings T2 - Antike Erdbeben im alpinen und zirkumalpinen Raum : Befunde und Probleme in archäologischer, historischer und seismologischer Sicht ; Beiträge des Interdisziplinären Workshops Schloss Hohenkammer, 14./15. Mai 2004 = Earthquakes in antiquity in the alpine and circum-alpine region / Gerhard H. Waldherr ; Anselm Smolka (Hrsg.) (Geographica Historica ; 24) Y1 - 2007 SN - 978-3-515-09030-8 ; 3-515-09030-4 SP - 171 EP - 189 PB - Franz Steiner Verlag CY - Stuttgart ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Butenweg, Christoph A1 - Mistler, Michael A1 - Kuhlmann, Wolfram T1 - Seismic behaviour of historic masonry buildings T2 - 7th National Congress on Mechanics : Chania, Crete, June 24 - 26, 2004 ; proceedings / ed. A. Kounadis .... Y1 - 2004 SP - 47 EP - 49 PB - Hellenic Society for Theoretical and Applied Mechanics CY - Chania ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Holler, Stefan A1 - Butenweg, Christoph A1 - Meiners, Daniel T1 - A multiphase model with hypoplastic formulation of the solid phase and its application to earthquake engineering problems T2 - Computational structural dynamics and earthquake engineering / ed. by Manolis Papadrakakis .... (Structures and infrastructures series ; 2) Y1 - 2009 SN - 978-0-415-45261-8 U6 - http://dx.doi.org/10.1201/9780203881637.ch19 SP - 293 EP - 308 PB - CRC Press CY - Boca Raton, Fla. [u.a.] ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Holtschoppen, Britta A1 - Butenweg, Christoph A1 - Rosin, Julia T1 - Seismic analysis of liquid storage tanks T2 - Earthquake Geology and Archaeology: Science, Society and Critical facilities : proceedings ; 2nd INQUA-IGCP 567 International Workshop on Active Tectonics, Earthquake Geology, Archaeology and Engineering ; 19-24 September 2011, Corinth (Greece) / Eds.: C. Grützner ; R. Pérez-Lopez ; T. Fernández Steeger ; I. Papanikolaou ; K. Reicherter ; P. G. Silva ; A. Vött. Volume 2 Y1 - 2011 SN - 978-960-466-093-3 SP - 136 EP - 139 PB - The Natural hazards Laboratory, National and Kapodistrian University of Athens CY - Athens ER - TY - JOUR A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Kinkel, Sven T1 - Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading JF - Soil Dynamics and Earthquake Engineering N2 - In recent years, many onshore wind turbines are erected in seismic active regions and on soils with poor load bearing capacity, where pile grids are inevitable to transfer the loads into the ground. In this contribution, a realistic multi pile grid is designed to analyze the dynamics of a wind turbine tower including frequency dependent soil-structure-interaction. It turns out that different foundations on varying soil configurations heavily influence the vibration response. While the vibration amplitude is mostly attenuated, certain unfavorable combinations of structure and soil parameters lead to amplification in the range of the system's natural frequencies. This testifies the need for overall dynamic analysis in the assessment of the dynamic stability and the holistic frequency tuning of the turbines. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.soildyn.2018.03.009 SN - 0267-7261 VL - 109 SP - 299 EP - 311 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Frequency Dependent Impedance Analysis of the Foundation-Soil-Systems of Onshore Wind Turbines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11440 SP - 1 EP - 13 ER - TY - CHAP A1 - Michel, Philipp A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Soil-dependent earthquake spectra in the analysis of liquid-storage-tanks on compliant soil T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 245 EP - 254 ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results. KW - Seismic loading KW - Masonry infill KW - Out-of-plane load KW - Out-of-plane strength Y1 - 2021 SN - 978-618-85072-5-8 U6 - http://dx.doi.org/10.7712/120121.8528.18914 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 829 EP - 846 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 SP - 2747 EP - 2756 ER - TY - CHAP A1 - Milkova, Kristina A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Methodology for development of seismic vulnerability curve for existing unreinforced Masonry buildings T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - Seismic behavior of an existing unreinforced masonry building built pre-modern code, located in the City of Ohrid, Republic of North Macedonia has been investigated in this paper. The analyzed school building is selected as an archetype in an ongoing project named “Seismic vulnerability assessment of existing masonry structures in Republic of North Macedonia (SeismoWall)”. Two independent segments were included in this research: Seismic hazard assessment by creating a cite specific response spectra and Seismic vulnerability definition by creating a region - specific series of vulnerability curves for the chosen building topology. A reliable Seismic Hazard Assessment for a selected region is a crucial point for performing a seismic risk analysis of a characteristic building class. In that manner, a scenario – based method that incorporates together the knowledge of tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity named Neo Deterministic approach is used for calculation of the response spectra for the location of the building. Variations of the rupturing process are taken into account in the nucleation point of the rupture, in the rupture velocity pattern and in the istribution of the slip on the fault. The results obtained from the multiple scenarios are obtained as an envelope of the response spectra computed for the cite using the procedure Maximum Credible Seismic Input (MCSI). Capacity of the selected building has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) was used for verification of the structural safety of the chosen unreinforced masonry structure. In the process of optimization of the number of samples, computational cost required in a Monte Carlo simulation is significantly reduced since the simulation is performed on a polynomial response surface function for prediction of the structural response. Performance point, found as the intersection of the capacity of the building and the spectra used, is chosen as a response parameter. Five levels of damage limit states based on the capacity curve of the building are defined in dependency on the yield displacement and the maximum displacement. Maximum likelihood estimation procedure is utilized in the process of vulnerability curves determination. As a result, region specific series of vulnerability curves for the chosen type of masonry structures are defined. The obtained probabilities of exceedance a specific damage states as a result from vulnerability curves are compared with the observed damages happened after the earthquake in July 2017 in the City of Ohrid, North Macedonia. KW - Masonry structures KW - Vulnerability Curves KW - Capacity Curve KW - Neo-Deterministic KW - Seismic Hazard Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Milkova, Kristina A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Region-sensitive comprehensive procedure for determination of seismic fragility curves T2 - 1st Croatian Conference on Earthquake Engineering 1CroCEE 22-24 March 2021 Zagreb, Croatia N2 - Seismic vulnerability estimation of existing structures is unquestionably interesting topic of high priority, particularly after earthquake events. Having in mind the vast number of old masonry buildings in North Macedonia serving as public institutions, it is evident that the structural assessment of these buildings is an issue of great importance. In this paper, a comprehensive methodology for the development of seismic fragility curves of existing masonry buildings is presented. A scenario – based method that incorporates the knowledge of the tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity (determined via the Neo Deterministic approach) is used for calculation of the necessary response spectra. The capacity of the investigated masonry buildings has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) is used for verification of the structural safety of the structures Performance point, obtained from the intersection of the capacity of the building and the spectra used, is selected as a response parameter. The thresholds of the spectral displacement are obtained by splitting the capacity curve into five parts, utilizing empirical formulas which are represented as a function of yield displacement and ultimate displacement. As a result, four levels of damage limit states are determined. A maximum likelihood estimation procedure for the process of fragility curves determination is noted as a final step in the proposed procedure. As a result, region specific series of vulnerability curves for structures are defined. KW - seismic risk KW - seismic vulnerability KW - fragility curves KW - masonry structures Y1 - 2021 U6 - http://dx.doi.org/10.5592/CO/1CroCEE.2021.158 SP - 121 EP - 128 PB - University of Zagreb CY - Zagreb ER - TY - CHAP A1 - Milkova, Kristina A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Development of Seismic Vulnerability Curves for Region Specific Masonry Buildings T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10522 SP - 1 EP - 10 ER -