TY - JOUR A1 - Ziemons, Karl A1 - Kleines, H. A1 - Erken, I. A1 - Knoben, J. A1 - Zwoll, K. ED - Lehmann, Thomas T1 - IME-DV Projekt: M-FIRBe, Multi-Modality Functional Imaging for Brain Research JF - Bildverarbeitung für die Medizin : Algorithmen - Systeme - Anwendungen Y1 - 1997 SN - 3-86073-519-5 N1 - Proceedings des Aachener Workshops am 8. u. 9. November 1996 ; WG_005 Arbeitsgruppenvorstellungen SP - 363 EP - 366 PB - Verl. der. Augustinus-Buchh. CY - Aachen ER - TY - JOUR A1 - Ziemons, Karl A1 - Herzog, H. A1 - Feinendegen, L. E. T1 - Iterative image reconstruction with weighted pixel contribution to projection element JF - European Journal of Nuclear Medicine Y1 - 1990 SN - 1619-7089 N1 - Abstracts of the European Association of Nuclear Medicine Congress ; V52 VL - 16 IS - 7 SP - 403 EP - 403 ER - TY - JOUR A1 - Ziemons, Karl A1 - Herzog, H. A1 - Bosetti, P. A1 - Feinendegen, L. E. T1 - Iterative image reconstruction with weighted pixel contribution to projection elements JF - European Journal of Nuclear Medicine Y1 - 1992 SN - 1619-7089 N1 - Abstracts of the European Association of Nuclear Medicine Congress 23–26 August 1992 Lisboa, Portugal ; V143-2 VL - 19 IS - 8 SP - 588 EP - 588 ER - TY - JOUR A1 - Ziemons, Karl A1 - Heinrichs, U. A1 - Streun, M. A1 - Pietrzyk, U. T1 - Validation of GEANT3 simulation studies with a dual-head PMT ClearPET™ prototype JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5 N2 - The ClearPET™ project is proposed by working groups of the Crystal Clear Collaboration (CCC) to develop a 2nd generation high performance small animal positron emission tomograph (PET). High sensitivity and high spatial resolution is foreseen for the ClearPET™ camera by using a phoswich arrangement combining mixed lutetium yttrium aluminum perovskite (LuYAP:Ce) and lutetium oxyorthosilicate (LSO) scintillating crystals. Design optimizations for the first photomultiplier tube (PMT) based ClearPET camera are done with a Monte-Carlo simulation package implemented on GEANT3 (CERN, Geneva, Switzerland). A dual-head prototype has been built to test the frontend electronics and was used to validate the implementation of the GEANT3 simulation tool. Multiple simulations were performed following the experimental protocols to measure the intrinsic resolution and the sensitivity profile in axial and radial direction. Including a mean energy resolution of about 27.0% the simulated intrinsic resolution is about (1.41±0.11)mm compared to the measured of (1.48±0.06)mm. The simulated sensitivity profiles show a mean square deviation of 12.6% in axial direction and 3.6% in radial direction. Satisfactorily these results are representative for all designs and confirm the scanner geometry. Y1 - 2004 SN - 1082-3654 SP - 3053 EP - 3056 ER - TY - JOUR A1 - Ziemons, Karl A1 - Bruyndonckx, P. A1 - Perez, J. M. A1 - Pietrzyk, U. A1 - Rato, P. A1 - Tavernier, S. T1 - Beyond ClearPET: Next Aims JF - 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro Symposium Proceedings ISBI 2008 N2 - The CRYSTAL CLEAR collaboration, in short CCC, is a consortium of 12 academic institutions, mainly from Europe, joining efforts in the area of developing instrumentation for nuclear medicine and medical imaging. In the framework of the CCC a high performance small animal PET system, called ClearPET, was developed by using new technologies in electronics and crystals in a phoswich arrangement combining two types of lutetium- based scintillator materials: LSO:Ce and LuYAP:Ce. Our next aim will be the development of hybrid image systems. Hybrid MR-PET imaging has many unique advantages for brain research. This has sparked a new research line within CCC for the development of novel MR-PET compatible technologies. MRI is not as sensitive as PET but PET has poorer spatial resolution than MRI. Two major advantages of PET are sensitivity and its ability to acquire metabolic information. To assess these innovations, the development of a 9.4T hybrid animal MR-PET scanner is proposed based on an existing 9.4T MR scanner that will be adapted to enable simultaneous acquisition of MR and PET data using cutting- edge technology for both MR and PET. Y1 - 2008 SN - 978-1-4244-2003-2 SP - 1421 EP - 1424 ER - TY - JOUR A1 - Ziemons, Karl A1 - Berghoff, G. A1 - Lanske, D. A1 - Schultze, K. T1 - Strangeness production in deep inelastic muon-nucleon scattering JF - Verhandlungen der Deutschen Physikalischen Gesellschaft Y1 - 1988 SN - 0420-0195 VL - 23 IS - 5 SP - T309 EP - T309 ER - TY - JOUR A1 - Ziemons, Karl A1 - Auffray, E. A1 - Barbier, R. A1 - Brandenburg, G. A1 - Bruyndonckx, P. T1 - The ClearPET™ project: Development of a 2nd generation high-performance small animal PET scanner JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - Second generation high-performance PET scanners, called ClearPET™1, have been developed by working groups of the Crystal Clear Collaboration (CCC). High sensitivity and high spatial resolution for the ClearPET camera is achieved by using a phoswich arrangement combining two different types of lutetium-based scintillator materials: LSO from CTI and LuYAP:Ce from the CCC (ISTC project). In a first ClearPET prototype, phoswich arrangements of 8×8 crystals of 2×2×10 mm3 are coupled to multi-channel photomultiplier tubes (Hamamatsu R7600). A unit of four PMTs arranged in-line represents one of 20 sectors of the ring design. The opening diameter of the ring is 120 mm, the axial detector length is 110 mm.The PMT pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the exact pulse starting time, which is subsequently used for coincidence detection. The gantry allows rotation of the detector modules around the field of view. Preliminary data shows a correct identification of the crystal layer about (98±1)%. Typically the energy resolution is (23.3±0.5)% for the luyap layer and (15.4±0.4)% for the lso layer. early studies showed the timing resolution of 2 ns FWHM and 4.8 ns FWTM. the intrinsic spatial resolution ranges from 1.37 mm to 1.61 mm full-width of half-maximum (FWHM) with a mean of 1.48 mm FWHM. further improvements in image and energy resolution are expected when the system geometry is fully modeled. Y1 - 2005 SN - 0168-9002 N1 - Proceedings of the 7th International Conference on Inorganic Scintillators and their Use in Scientific and Industrial Applications VL - 537 IS - 1-2 SP - 307 EP - 311 ER - TY - JOUR A1 - Ziemons, Karl A1 - Auffray, E. A1 - Barbier, R. A1 - Brandenburg, G. T1 - The ClearPET TM LSO/LuYAP phoswich scanner: a high performance small animal PET system JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - A 2nd generation high performance small animal PET scanner, called ClearPET™, has been designed and a first prototype is built by working groups of the Crystal Clear Collaboration (CCC). In order to achieve high sensitivity and maintain good uniform spatial resolution over the field of view in high resolution PET systems, it is necessary to extract the depth of interaction (DOI) information and correct for spatial degradation. The design of the first ClearPET™ Demonstrator based on the use of the multi-anode photomultiplier tube (Hamamatsu R7600-M64) and a LSO/LuYAP phoswich matrix. The two crystal layers of 8*8 crystals (2*2*10 mm3) are stacked on each other and mounted without light guide as one to one on the PMT. A unit of four PMTs arranged in-line represents one of 20 sectors of the ring design. The opening diameter of the crystal ring is 137 mm, the axial detector length is 110 mm. The PMT pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the pulse arrival time. Single gamma interactions are recorded and coincidences are found by software. The gantry allows rotation of the detector modules around the field of view. The measurements have been done using the first LSO/LuYAP detector cassettes. Y1 - 2004 SN - 1082-3654 SP - 1728 EP - 1732 ER - TY - JOUR A1 - Ziemons, Karl A1 - Achten, R. A1 - Auffray, E. A1 - Müller-Veggian, Mattea T1 - The ClearPET™ neuro scanner: a dedicated LSO/LuYAP phoswich small animal PET scanner JF - 2004 IEEE Nuclear Science Symposium conference record : Nuclear Science Symposium, Medical Imaging Conference ; 16 - 22 October 2004, Rome, Italy ; [including the Symposium on Nuclear Power System (SNPS), 14th Room Temperature Semiconductor X- and Gamma-Ray Detectors Workshop and special focus workshops] / NPSS, Nuclear & Plasma Sciences Society. Guest ed.: J. Anthony Seibert Y1 - 2004 SN - 1082-3654 N1 - Nuclear Science Symposium Conference Record, 2004 IEEE SP - 2430 EP - 2433 PB - IEEE Operations Center CY - Piscataway, NJ ER - TY - JOUR A1 - Ziemons, Karl T1 - Jet production and fragmentation properties in deep inelastic muon scattering JF - Zeitschrift für Physik C : Particles and Fields Y1 - 1987 SN - 0170-9739 N1 - European Muon Collaboration VL - 36 IS - 4 SP - 527 EP - 543 ER - TY - JOUR A1 - Ziemons, Karl T1 - A measurement of the spin asymmetry of the structure function g1 in deep inelastic muon-proton scattering JF - Physics Letters B N2 - The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01 ; Teknillinen Korkeakoulu ; International Conference on Biomagnetism <12, 2000, Espoo> PB - Helsinki Univ. of Technology, Laboratory of Biomedical Engineering CY - Espoo ER - TY - JOUR A1 - Parl, C. A1 - Larue, H. A1 - Streun, M. A1 - Ziemons, Karl T1 - Double-side-readout technique for SiPM-matrices JF - 2010 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) N2 - In our case the double-side-method is used to minimize the complexity of a matrix-readout. Here the number of channels is reduced to 2√N̅. It is also possible to benefit from the method in a single pixel readout system. One signal can be used to measure position and energy of the event, the other one can be applied to a fast trigger-circuit at the same time. In a next step we will investigate timing behavior and electrical crosstalk of the circuit. Y1 - 2011 SN - 1095-7863 SP - 1486 EP - 1487 PB - IEEE CY - New York ER - TY - CHAP A1 - Olderog, M. A1 - Mohr, P. A1 - Beging, Stefan A1 - Tsoumpas, C. A1 - Ziemons, Karl T1 - Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph T2 - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) N2 - In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50%, while a change of the energy resolution in the absorber layer from 12% to 4.5% results in a reduction of 60%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm. Y1 - 2021 SN - 978-1-7281-7693-2 U6 - http://dx.doi.org/10.1109/NSS/MIC42677.2020.9507901 N1 - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 31 Oct.-7 Nov. 2020, Boston, MA, USA PB - IEEE ER - TY - JOUR A1 - Mosset, J.-B. A1 - Devroede, O. A1 - Krieguer, M. A1 - Rey, M. A1 - Vieira, J.-M. A1 - Jung, J. H. A1 - Kuntner, C. A1 - Streun, M. A1 - Ziemons, Karl A1 - Auffray, E. A1 - Sempere-Roldan, P. A1 - Lecoq, P. A1 - Bruyndonckx, P. A1 - Loude, J.-F. A1 - Tavernier, S. A1 - Morcel, C. T1 - Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator JF - IEEE Transactions on Nuclear Science N2 - This paper describes the LSO/LuYAP phoswich detector head developed for the ClearPET small animal PET scanner demonstrator that is under construction in Lausanne within the Crystal Clear Collaboration. The detector head consists of a dual layer of 8×8 LSO and LuYAP crystal arrays coupled to a multi-anode photomultiplier tube (Hamamatsu R7600-M64). Equalistion of the LSO/LuYAP light collection is obtained through partial attenuation of the LSO scintillation light using a thin aluminum deposit of 20-35 nm on LSO and appropriate temperature regulation of the phoswich head between 30°C to 60°C. At 511keV, typical FWHM energy resolutions of the pixels of a phoswich head amounts to (28±2)% for LSO and (25±2)% for LuYAP. The LSO versus LuYAP crystal identification efficiency is better than 98%. Six detector modules have been mounted on a rotating gantry. Axial and tangential spatial resolutions were measured up to 4 cm from the scanner axis and compared to Monte Carlo simulations using GATE. FWHM spatial resolution ranges from 1.3 mm on axis to 2.6 mm at 4 cm from the axis. Y1 - 2006 SN - 0018-9499 VL - 53 IS - 1 SP - 25 EP - 29 ER - TY - JOUR A1 - Langen, Karl J. A1 - Ziemons, Karl A1 - Kiwit, Jürgen C. W. A1 - Herzog, Hans A1 - Kuwert, Torsten A1 - Bock, Wolfgang A1 - Stöcklin, Gerhard A1 - Feinendegen, Ludwig E. A1 - Müller-Gärtner, Hans-W. T1 - 3-[123I]iodo-α-methyltyrosine and [methyl-11C]-L-methionine uptake in cerebral gliomas: a compara-tive study using SPECT and PET JF - Journal of Nuclear Medicine Y1 - 1997 SN - 0161-5505 VL - 38 IS - 4 SP - 517 EP - 522 ER - TY - JOUR A1 - Kleines, H. A1 - Erki, I. A1 - Ziemons, Karl A1 - Zwoll, K. ED - Lehmann, Thomas T1 - ATM- und Multimedia Pilotsystem im Rahmen des Projektes M-FIBRe Aufbau und Erfahrungen JF - Bildverarbeitung für die Medizin : Algorithmen - Systeme - Anwendungen Y1 - 1997 SN - 3-86073-519-5 N1 - Proceedings des Aachener Workshops am 8. u. 9. November 1996 ; PP_001 Posterpräsentation SP - 241 EP - 248 PB - Verl. der. Augustinus-Buchh. CY - Aachen ER - TY - JOUR A1 - Khodaverdi, M. A1 - Weber, S. A1 - Streun, M. A1 - Parl, C. A1 - Ziemons, Karl T1 - High resolution imaging with ClearPET™ Neuro - first animal images JF - 2005 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - The ClearPET™ Neuro is the first full ring scanner within the Crystal Clear Collaboration (CCC). It consists of 80 detector modules allocated to 20 cassettes. LSO and LuYAP:Ce crystals in phoswich configuration in combination with position sensitive photomultiplier tubes are used to achieve high sensitivity and realize the acquisition of the depth of interaction (DOI) information. The complete system has been tested concerning the mechanical and electronical stability and interplay. Moreover, suitable corrections have been implemented into the reconstruction procedure to ensure high image quality. We present first results which show the successful operation of the ClearPET™ Neuro for artefact free and high resolution small animal imaging. Based on these results during the past few months the ClearPET™ Neuro System has been modified in order to optimize the performance. Y1 - 2006 SN - 1082-3654 SP - 1641 EP - 1644 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Pauly, F. A1 - Schroder, G. A1 - Ziemons, Karl A1 - Sievering, R. A1 - Halling, H. T1 - Preliminary studies of a micro-CT for a combined small animal PET/CT scanner JF - 2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - We are developing an X-ray computed tomography (CT) system which will be combined with a high resolution animal PET system. This permits acquisition of both molecular and anatomical images in a single machine. In particular the CT will also be utilized for the quantification of the animal PET data by providing accurate data for attenuation correction. A first prototype has been built using a commercially available plane silicon diode detector. A cone-beam reconstruction provides the images using the Feldkamp algorithm. First measurements with this system have been performed on a mouse. It could be shown that the CT setup fulfils all demands for a high quality image of the skeleton of the mouse. It is also suited for soft tissue measurements. To improve contrast and resolution and to acquire the X-ray energy further development of the system, especially the use of semiconductor detectors and iterative reconstruction algorithms are planned. Y1 - 2002 SN - 1082-3654 SP - 1605 EP - 1606 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Chaziioannou, A. F. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. A1 - Pietrzyk, U. T1 - Investigation of different microCT scanner configurations by GEANT4 simulations JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4 N2 - This study has been performed to design the combination of the new ClearPET TM (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal Positron Emission Tomography (PET) system, with a microComputed Tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material. Y1 - 2004 SN - 1082-3654 SP - 2989 EP - 2993 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Chatziioannou, A. F. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. A1 - Pietrzyk, U. T1 - Investigation of different MicroCT scanner configurations by GEANT4 simulations JF - IEEE Transactions on Nuclear Science N2 - This study has been performed to design the combination of the new ClearPET (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal positron emission tomography (PET) system, with a micro-computed tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We will demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material. Y1 - 2005 SN - 0018-9499 VL - 52 IS - 1 SP - 188 EP - 192 ER - TY - JOUR A1 - Jahnke, Siegfried A1 - Menzel, Marion I. A1 - Dusschoten, Dagmar van A1 - Roeb, Gerhard W. A1 - Bühler, Jonas A1 - Minwuyelet, Senay A1 - Blümler, Peter A1 - Temperton, Vicky M. A1 - Hombach, Thomas A1 - Streun, Matthias A1 - Beer, Simone A1 - Khodaverdi, Maryam A1 - Ziemons, Karl A1 - Coenen, Heinz H. A1 - Schurr, Ulrich T1 - Combined MRI–PET dissects dynamic changes in plant structures and functions JF - The Plant Journal N2 - Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope 11C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI–PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance. Y1 - 2009 SN - 1365-313X VL - 59 IS - 4 SP - 634 EP - 644 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Herzog, Hans A1 - Pietrzyk, Uwe A1 - Shah, N. Jon A1 - Ziemons, Karl T1 - The current state, challenges and perspectives of MR-PET JF - Neuroimage N2 - Following the success of PET/CT during the last decade and the recent increasing proliferation of SPECT/CT, another hybrid imaging instrument has been gaining more and more interest: MR-PET. First combined, simultaneous PET and MR studies carried out in small animals demonstrated the feasibility of the new approach. Concurrently, some prototypes of an MR-PET scanner for simultaneous human brain studies have been built, their performance is being tested and preliminary applications have already been shown. Through this pioneering work, it has become clear that advances in the detector design are necessary for further optimization. Recently, the different issues related to the present state and future prospects of MR-PET were presented and discussed during an international 2-day workshop at the Forschungszentrum Jülich, Germany, held after, and in conjunction with, the 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference in Dresden, Germany on October 27–28, 2008. The topics ranged from small animal MR-PET imaging to human MR-BrainPET imaging, new detector developments, challenges/opportunities for ultra-high field MR-PET imaging and considerations of possible future research and clinical applications. This report presents a critical summary of the contributions made to the workshop. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.neuroimage.2009.10.036 SN - 1053-8119 VL - 49 IS - 3 SP - 2072 EP - 2082 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heinrichs, U. A1 - Pietrzyk, U. A1 - Ziemons, Karl T1 - Design optimization of the PMT-ClearPET prototypes based on simulation studies with GEANT3 JF - IEEE Transactions on Nuclear Science N2 - Within the Crystal Clear Collaboration (CCC), four centers are developing second generation high performance small animal positron emission tomography (PET) scanners for different kinds of animals and medical applications. The first prototypes are photomultiplier tube (PMT)-based systems including depth of interaction (DOI) detection by using a phoswich layer of lutetium oxyorthosilicate (LSO) and lutetium yttrium aluminum perovskite (LuYAP). The aim of these simulation studies is to optimize sensitivity and spatial resolution of given designs, which vary in fields of view (FOVs) caused by different detector configurations (ring/octagon) and sizes. For this purpose the simulation tool GEANT3 (CERN, Geneva, Switzerland) was used. Y1 - 2003 SN - 0018-9499 VL - 50 IS - 5 SP - 1428 EP - 1432 ER - TY - JOUR A1 - Heinrich, U. A1 - Blum, A. A1 - Bussmann, N. A1 - Engels, R. A1 - Kemmerling, G. A1 - Weber, S. A1 - Ziemons, Karl T1 - Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2×2×10 mm3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO4) and exposed to a 22Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551±35% by mechanical polishing the surface compared to 100±5% for raw crystals. Etching the surface increased the light output to 441±29%. The untreated crystals had an energy resolution of 24.6±4.0%. By mechanical polishing the surface it was possible to achieve an energy resolution of 13.2±0.8%, by etching of 14.8±0.7%. In combination with BaSO4 as reflector material the maximum increase of light output has been established to 932±57% for mechanically polished and 895±61% for etched crystals. The combination with BaSO4 also caused the best improvement of the energy resolution up to 11.6±0.2% for mechanically polished and 12.2±0.3% for etched crystals. Relating to the light output there was no significant statistical difference between the two surface treatments in combination with BaSO4. In contrast to this, the statistical results of the energy resolution have shown the combination of mechanical polishing and BaSO4 as the optimum. Y1 - 2002 SN - 0168-9002 N1 - Proceedings of the 6th International Conference on Inorganic Scin tillators and their Use in Scientific and Industrial Applications VL - 486 IS - 1-2 SP - 60 EP - 66 ER - TY - JOUR A1 - Grießmeier, M. A1 - Sonnenberg, F. A1 - Weckesser, M. A1 - Ziemons, Karl A1 - Langen, K.-J. A1 - Müller-Gärtner, H. W. T1 - Improvement of SPECT quantification in small brain structures by using experiment based recovery-coefficient corrections JF - European Journal of Nuclear Medicine Y1 - 1996 SN - 1619-7089 N1 - Abstracts ; PSu827 VL - 23 IS - 9 SP - 1238 EP - 1238 ER - TY - JOUR A1 - Garibaldi, F. A1 - Beging, Stefan A1 - Canese, R. A1 - Carpinelli, G. A1 - Clinthorne, N. A1 - Colilli, S. A1 - Cosentino, L. A1 - Finocchiaro, P. A1 - Giuliani, F. A1 - Gricia, M. A1 - Lucentini, M. A1 - Majewski, S. A1 - Monno, E. A1 - Musico, P. A1 - Santavenere, F. A1 - Tödter, J. A1 - Wegener, Hans-Peter A1 - Ziemons, Karl T1 - A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer JF - European Physical Journal Plus Y1 - 2017 U6 - http://dx.doi.org/10.1140/epjp/i2017-11662-x SN - 2190-5444 VL - 132 IS - 9 PB - Springer CY - Berlin ER - TY - JOUR A1 - Fink, G. R. A1 - Marshall, J. C. A1 - Shah, N. J. A1 - Weiss, P.H. A1 - Halligan, P. W. A1 - Grosse-Ruyken, M. A1 - Ziemons, Karl A1 - Zilles, K. A1 - Freund, H. J. T1 - Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI JF - Neurology Y1 - 2000 SN - 1526-632X VL - 54 IS - 6 SP - 1324 EP - 1331 ER - TY - JOUR A1 - Erki, I. A1 - Kleines, H. A1 - Ziemons, Karl A1 - Zwoll, K. ED - Lehmann, Thomas T1 - Interaktives System zur Darstellung funktionaler Bilddaten JF - Bildverarbeitung für die Medizin : Algorithmen - Systeme - Anwendungen Y1 - 1997 SN - 3-86073-519-5 N1 - Proceedings des Aachener Workshops am 8. u. 9. November 1996 ; PP_002 Posterpräsentation SP - 249 EP - 254 PB - Verl. der. Augustinus-Buchh. CY - Aachen ER - TY - JOUR A1 - Christ, D. A1 - Hollendung, A. A1 - Larue, H. A1 - Parl, C. A1 - Streun, M. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. T1 - Homogenization of the MultiChannel PM gain by inserting light attenuating masks JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4 N2 - MultiChannel Photomultipliers (PM), like the R7600-00-M64 or R5900-00-M64 from Hamamatsu, are often chosen as photodetectors in high-resolution positron emission tomography (PET). A major problem of this PM is the nonuniform channel gain. In order to solve this problem, light attenuating masks were created. The aim of the masks is a homogenization of the output of all 64 channels using different hole sizes at the channel positions. The hole area, which is individually defined for the different channels, is inversely proportional to the channel gain. The measurements by inserting light attenuating masks improved a homogenization to a ratio of 1:1.2. Y1 - 2004 SN - 1082-3654 SP - 2382 EP - 2385 ER - TY - JOUR A1 - Choi, Chang-Hoon A1 - Felder, Tim A1 - Felder, Jörg A1 - Tellmann, Lutz A1 - Hong, Suk-Min A1 - Wegener, Hans-Peter A1 - Shah, N Jon A1 - Ziemons, Karl T1 - Design, evaluation and comparison of endorectal coils for hybrid MR-PET imaging of the prostate JF - Physics in Medicine & Biology N2 - Prostate cancer is one of the most common cancers among men and its early detection is critical for its successful treatment. The use of multimodal imaging, such as MR-PET, is most advantageous as it is able to provide detailed information about the prostate. However, as the human prostate is flexible and can move into different positions under external conditions, it is important to localise the focused region-of-interest using both MRI and PET under identical circumstances. In this work, we designed five commonly used linear and quadrature radiofrequency surface coils suitable for hybrid MR-PET use in endorectal applications. Due to the endorectal design and the shielded PET insert, the outer face of the coils investigated was curved and the region to be imaged was outside the volume of the coil. The tilting angles of the coils were varied with respect to the main magnetic field direction. This was done to approximate the various positions from which the prostate could be imaged. The transmit efficiencies and safety excitation efficiencies from simulations, together with the signal-to-noise ratios from the MR images were calculated and analysed. Overall, it was found that the overlapped loops driven in quadrature were superior to the other types of coils we tested. In order to determine the effect of the different coil designs on PET, transmission scans were carried out, and it was observed that the differences between attenuation maps with and without the coils were negligible. The findings of this work can provide useful guidance for the integration of such coil designs into MR-PET hybrid systems in the future. Y1 - 2020 U6 - http://dx.doi.org/10.1088/1361-6560/ab87f8 SN - 0031-9155 VL - 65 IS - 11 PB - IOP CY - Bristol ER - TY - JOUR A1 - Bussmann, N. A1 - Engels, R. A1 - Fuss, L. A1 - Kemmerling, G. A1 - Reinartz, R. A1 - Langen, K.-J. A1 - Schelten, J. A1 - Ziemons, Karl T1 - Performance measurement of a new high resolution detector system for I-131 thyroid studies JF - 2000 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - A 2-dimensional detector system for high resolution thyroid I-131 scintigraphy was developed. It has a sensitive area of 4 cm×4 cm and consists of a lead-collimator and an array of 10×10 EGO crystals combined with a position sensitive photomultiplier. The spatial resolution and the sensitivity of the detector has been measured and compared to two commercially available gamma-cameras. Furthermore first patient measurements have been carried out Y1 - 2000 SN - 1082-3654 SP - 22/35 EP - 22/37 ER - TY - JOUR A1 - Boecker, Henning A1 - Kuwert, Torsten A1 - Langen, Karl-J. A1 - Lange, Herwig W. A1 - Czech, Norbert A1 - Ziemons, Karl A1 - Herzog, Hans A1 - Shikare, Shekar A1 - Weindl, Anton A1 - Feinendegen, Ludwig E. T1 - SPECT with HMPAO compared to PET with FDG in Huntington disease JF - Journal of Computer Assisted Tomography Y1 - 1994 SN - 1532-3145 VL - 18 IS - 4 SP - 542 EP - 548 ER - TY - JOUR A1 - Berghoff, G. A1 - Lanske, D. A1 - Schultze, K. A1 - Ziemons, Karl T1 - Jets and QCD-effects in muon-nuclean scattering JF - Verhandlungen der Deutschen Physikalischen Gesellschaft Y1 - 1988 SN - 0420-0195 VL - 23 IS - 5 ER - TY - JOUR A1 - Beer, S. A1 - Streun, M. A1 - Hombach, T. A1 - Buehler, J. A1 - Jahnke, S. A1 - Khodaverdi, M. A1 - Larue, H. A1 - Minwuyelet, S. A1 - Parl, C. A1 - Roeb, G. A1 - Schurr, U. A1 - Ziemons, Karl T1 - Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants JF - Physics in Medicine and Biology N2 - Positron emitters such as 11C, 13N and 18F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is 11CO2 since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET™ system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements. Y1 - 2010 U6 - http://dx.doi.org/10.1088/0031-9155/55/3/006 SN - 1361-6560 VL - 55 IS - 3 SP - 635 EP - 646 PB - IOP CY - Bristol ER - TY - JOUR A1 - Auffray, E. A1 - Bruyndonckx, P. A1 - Devroede, O. A1 - Fedorov, A. A1 - Ziemons, Karl T1 - The ClearPET project JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - The Crystal Clear Collaboration has designed and is building a high-resolution small animal PET scanner. The design is based on the use of the Hamamatsu R7600-M64 multi-anode photomultiplier tube and a LSO/LuYAP phoswich matrix with one to one coupling between the crystals and the photo-detector. The complete system will have 80 PM tubes in four rings with an inner diameter of 137 mm and an axial field of view of 110 mm. The PM pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the pulse arrival time. Single gamma interactions are recorded and coincidences are found by software. The gantry allows rotation of the detector modules around the field of view. Simulations, and measurements a 2×4 module test set-up predict a spatial resolution of 1.5 mm in the centre of the field of view and a sensitivity of 5.9% for a point source in the centre of the field of view. Y1 - 2004 SN - 0168-9002 N1 - Proceedings of the 2nd International Conference on Imaging Technologies in Biomedical Sciences VL - 527 IS - 1-2 SP - 171 EP - 174 ER - TY - GEN A1 - Achten, Richard A1 - Bauer, Andreas A1 - Bertram, Walter A1 - Cremer, Markus A1 - Daemen, Jos A1 - Dehnhardt, Markus A1 - Fleischer, Manfred A1 - Kirchner, Peter A1 - Leyendecker, Marco A1 - Pietrzyk, Uwe A1 - Schmitz, Jakob A1 - Ziemons, Karl A1 - Zilles, Karl T1 - Vorrichtung zum Halten eines lebenden Objektes bei physiologischen Messungen N2 - Die vorliegende Erfindung betrifft eine Vorrichtung zum Halten eines lebenden Objektes bei physiologischen Messungen mit einem Basiselement und Mitteln zum Arretieren des lebenden Objektes, die atraumatische Ohrenhalter sowie ein Mundstück aufweisen, das mit einer Aussparung für die Zähne des Lebewesens versehen ist, mit einem Masseanteil von wenigstens 95% an glasfaserverstärktem Kunststoff. Y1 - 2005 N1 - Patent Anmelder : Forschungszentrum Jülich GmbH SP - 1 EP - 17 ER -