TY - CHAP A1 - Schmitz, Annika A1 - Apandi, Shah Eiman Amzar Shah A1 - Spillner, Jan A1 - Hima, Flutura A1 - Behbahani, Mehdi ED - Digel, Ilya ED - Staat, Manfred ED - Trzewik, Jürgen ED - Sielemann, Stefanie ED - Erni, Daniel ED - Zylka, Waldemar T1 - Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis T2 - 4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen N2 - Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA. Y1 - 2024 SN - 978-3-940402-65-3 U6 - http://dx.doi.org/10.17185/duepublico/81475 SP - 29 EP - 30 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Malinowski, Daniel A1 - Fournier, Yvan A1 - Horbach, Andreas A1 - Frick, Michael A1 - Magliani, Mirko A1 - Kalverkamp, Sebastian A1 - Hildinger, Martin A1 - Spillner, Jan A1 - Behbahani, Mehdi A1 - Hima, Flutura T1 - Computational fluid dynamics analysis of endoluminal aortic perfusion JF - Perfusion N2 - Introduction: In peripheral percutaneous (VA) extracorporeal membrane oxygenation (ECMO) procedures the femoral arteries perfusion route has inherent disadvantages regarding poor upper body perfusion due to watershed. With the advent of new long flexible cannulas an advancement of the tip up to the ascending aorta has become feasible. To investigate the impact of such long endoluminal cannulas on upper body perfusion, a Computational Fluid Dynamics (CFD) study was performed considering different support levels and three cannula positions. Methods: An idealized literature-based- and a real patient proximal aortic geometry including an endoluminal cannula were constructed. The blood flow was considered continuous. Oxygen saturation was set to 80% for the blood coming from the heart and to 100% for the blood leaving the cannula. 50% and 90% venoarterial support levels from the total blood flow rate of 6 l/min were investigated for three different positions of the cannula in the aortic arch. Results: For both geometries, the placement of the cannula in the ascending aorta led to a superior oxygenation of all aortic blood vessels except for the left coronary artery. Cannula placements at the aortic arch and descending aorta could support supra-aortic arteries, but not the coronary arteries. All positions were able to support all branches with saturated blood at 90% flow volume. Conclusions: In accordance with clinical observations CFD analysis reveals, that retrograde advancement of a long endoluminal cannula can considerably improve the oxygenation of the upper body and lead to oxygen saturation distributions similar to those of a central cannulation. KW - computational fluid dynamics analysis KW - simulation KW - endoluminal KW - aortic perfusion KW - extracorporeal membrane oxygenation Y1 - 2022 U6 - http://dx.doi.org/10.1177/02676591221099809 SN - 1477-111X VL - 0 IS - 0 SP - 1 EP - 8 PB - Sage CY - London ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Spillner, Jan A1 - Kopp, Rüdiger A1 - Finocchiaro, Thomas T1 - Assistierte Zirkulation : ein Überblick aus klinischer Sicht = Assisted circulation: an overview from a clinical perspective / Spillner, Jan ; Kopp, Rüdiger ; Finocchiaro, Thomas ; Behbahani, Mehdi ; Rossaint, Rolf ; Steinseifer, Ulrich ; Behr, Marek ; Au JF - Biomedizinische Technik / Biomedical Engineering. 54 (2009), H. 5 Y1 - 2009 SN - 0013-5585 N1 - Printausgabe in der Bereichsbibliothek Jülich vorhanden : 63 Z 471 SP - 255 EP - 267 PB - De Gruyter CY - Berlin ER -