TY - JOUR A1 - Schoenrock, Britt A1 - Muckelt, Paul E. A1 - Hastermann, Maria A1 - Albracht, Kirsten A1 - MacGregor, Robert A1 - Martin, David A1 - Gunga, Hans-Christian A1 - Salanova, Michele A1 - Stokes, Maria J. A1 - Warner, Martin B. A1 - Blottner, Dieter T1 - Muscle stiffness indicating mission crew health in space JF - Scientific Reports N2 - Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes. KW - Ageing KW - Anatomy KW - Muscle KW - Musculoskeletal system KW - Physiology Y1 - 2024 U6 - http://dx.doi.org/10.1038/s41598-024-54759-6 SN - 2045-2322 N1 - Corresponding author: Dieter Blottner VL - 14 IS - Article number: 4196 PB - Springer Nature CY - London ER - TY - JOUR A1 - Pogorelova, Natalia A1 - Rogachev, Evgeniy A1 - Akimbekov, Nuraly A1 - Digel, Ilya T1 - Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates JF - Journal of materials science N2 - Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1%, dried until a constant weight was reached) and freeze-drying (FD, treated at − 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity. Y1 - 2024 U6 - http://dx.doi.org/10.1007/s10853-024-09596-3 SN - 1573-4803 (Online) SN - 0022-2461 (Print) N1 - Corresponding author: Ilya Digel VL - 2024 PB - Springer Science + Business Media CY - Dordrecht ER - TY - JOUR A1 - Zhen, Manghao A1 - Liang, Yunpei A1 - Staat, Manfred A1 - Li, Quanqui A1 - Li, Jianbo T1 - Discontinuous fracture behaviors and constitutive model of sandstone specimens containing non-parallel prefabricated fissures under uniaxial compression JF - Theoretical and Applied Fracture Mechanics N2 - The deformation and damage laws of non-homogeneous irregular structural planes in rocks are the basis for studying the stability of rock engineering. To investigate the damage characteristics of rock containing non-parallel fissures, uniaxial compression tests and numerical simulations were conducted on sandstone specimens containing three non-parallel fissures inclined at 0°, 45° and 90° in this study. The characteristics of crack initiation and crack evolution of fissures with different inclinations were analyzed. A constitutive model for the discontinuous fractures of fissured sandstone was proposed. The results show that the fracture behaviors of fissured sandstone specimens are discontinuous. The stress–strain curves are non-smooth and can be divided into nonlinear crack closure stage, linear elastic stage, plastic stage and brittle failure stage, of which the plastic stage contains discontinuous stress drops. During the uniaxial compression test, the middle or ends of 0° fissures were the first to crack compared to 45° and 90° fissures. The end with small distance between 0° and 45° fissures cracked first, and the end with large distance cracked later. After the final failure, 0° fissures in all specimens were fractured, while 45° and 90° fissures were not necessarily fractured. Numerical simulation results show that the concentration of compressive stress at the tips of 0°, 45° and 90° fissures, as well as the concentration of tensile stress on both sides, decreased with the increase of the inclination angle. A constitutive model for the discontinuous fractures of fissured sandstone specimens was derived by combining the logistic model and damage mechanic theory. This model can well describe the discontinuous drops of stress and agrees well with the whole processes of the stress–strain curves of the fissured sandstone specimens. KW - Constitutive model KW - Damage mechanics theory KW - Discontinuous fractures KW - Uniaxial compression test KW - Non-parallel fissures Y1 - 2024 U6 - http://dx.doi.org/10.1016/j.tafmec.2024.104373 SN - 0167-8442 VL - 131 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rausch, Valentin A1 - Harbrecht, Andreas A1 - Kahmann, Stephanie Lucina A1 - Fenten, Thomas A1 - Jovanovic, Nebojsa A1 - Hackl, Michael A1 - Müller, Lars P. A1 - Staat, Manfred A1 - Wegmann, Kilian T1 - Osteosynthesis of Phalangeal Fractures: Biomechanical Comparison of Kirschner Wires, Plates, and Compression Screws JF - The Journal of Hand Surgery N2 - Purpose The aim of this study was to compare several osteosynthesis techniques (intramedullary headless compression screws, T-plates, and Kirschner wires) for distal epiphyseal fractures of proximal phalanges in a human cadaveric model. Methods A total of 90 proximal phalanges from 30 specimens (index, ring, and middle fingers) were used for this study. After stripping off all soft tissue, a transverse distal epiphyseal fracture was simulated at the proximal phalanx. The 30 specimens were randomly assigned to 1 fixation technique (30 per technique), either a 3.0-mm intramedullary headless compression screw, locking plate fixation with a 2.0-mm T-plate, or 2 oblique 1.0-mm Kirschner wires. Displacement analysis (bending, distraction, and torsion) was performed using optical tracking of an applied random speckle pattern after osteosynthesis. Biomechanical testing was performed with increasing cyclic loading and with cyclic load to failure using a biaxial torsion-tension testing machine. Results Cannulated intramedullary compression screws showed significantly less displacement at the fracture site in torsional testing. Furthermore, screws were significantly more stable in bending testing. Kirschner wires were significantly less stable than plating or screw fixation in any cyclic load to failure test setup. Conclusions Intramedullary compression screws are a highly stable alternative in the treatment of transverse distal epiphyseal phalangeal fractures. Kirschner wires seem to be inferior regarding displacement properties and primary stability. Clinical relevance Fracture fixation of phalangeal fractures using plate osteosynthesis may have the advantage of a very rigid reduction, but disadvantages such as stiffness owing to the more invasive surgical approach and soft tissue irritation should be taken into account. Headless compression screws represent a minimally invasive choice for fixation with good biomechanical properties. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.jhsa.2020.04.010 SN - 0363-5023 VL - 45 IS - 10 SP - 987.e1 EP - 987.e8 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Meskemper, Joshua A1 - Albracht, Kirsten A1 - Abel, Thomas A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs JF - Journal of Electromyography and Kinesiology N2 - Muscular activity in terms of surface electromyography (sEMG) is usually normalised to maximal voluntary isometric contractions (MVICs). This study aims to compare two different MVIC-modes in handcycling and examine the effect of moving average window-size. Twelve able-bodied male competitive triathletes performed ten MVICs against manual resistance and four sport-specific trials against fixed cranks. sEMG of ten muscles [M. trapezius (TD); M. pectoralis major (PM); M. deltoideus, Pars clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. biceps brachii (BB); M. triceps brachii (TB); forearm flexors (FC); forearm extensors (EC); M. latissimus dorsi (LD) and M. rectus abdominis (RA)] was recorded and filtered using moving average window-sizes of 150, 200, 250 and 300 ms. Sport-specific MVICs were higher compared to manual resistance for TB, DA, DP and LD, whereas FC, TD, BB and RA demonstrated lower values. PM and EC demonstrated no significant difference between MVIC-modes. Moving average window-size had no effect on MVIC outcomes. MVIC-mode should be taken into account when normalised sEMG data are illustrated in handcycling. Sport-specific MVICs seem to be suitable for some muscles (TB, DA, DP and LD), but should be augmented by MVICs against manual/mechanical resistance for FC, TD, BB and RA. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.jelekin.2020.102402 SN - 1050-6411 VL - 51 IS - Article 102402 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Malan, Leone A1 - Hamer, Mark A1 - Känel, Roland von A1 - Kotliar, Konstantin A1 - Wyk, Roelof D. van A1 - Lambert, Gavin W. A1 - Vilser, Walthard A1 - Ziemssen, Tjalf A1 - Schlaich, Markus P. A1 - Smith, Wayne A1 - Magnusson, Martin A1 - Wentzel, Annemarie A1 - Myburgh, Carlien E. A1 - Steyn, Hendrik S. A1 - Malan, Nico T. T1 - Delayed retinal vein recovery responses indicate both non-adaptation to stress as well as increased risk for stroke: the SABPA study JF - Cardiovascular Journal of Africa Y1 - 2020 U6 - http://dx.doi.org/10.5830/CVJA-2020-031 SN - 1680-0745 VL - 26 IS - 31 SP - 1 EP - 12 PB - Clinics Cardive Publishing CY - Durbanville ER - TY - JOUR A1 - Gossmann, Matthias A1 - Thomas, Ulrich A1 - Horváth, András A1 - Dragicevic, Elena A1 - Stoelzle-Feix, Sonja A1 - Jung, Alexander A1 - Raman, Aravind Hariharan A1 - Staat, Manfred A1 - Linder, Peter T1 - A higher-throughput approach to investigate cardiac contractility in vitro under physiological mechanical conditions JF - Journal of Pharmacological and Toxicological Methods Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.vascn.2020.106843 VL - 105 IS - Article 106843 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Kopp, Alexander A1 - Schunck, Laura A1 - Gosau, Martin A1 - Smeets, Ralf A1 - Burg, Simon A1 - Fuest, Sandra A1 - Kröger, Nadja A1 - Zinser, Max A1 - Krohn, Sebastian A1 - Behbahani, Mehdi A1 - Köpf, Marius A1 - Lauts, Lisa A1 - Rutkowski, Rico T1 - Influence of the casting concentration on the mechanical and optical properties of Fa/CaCl2-derived silk fibroin membranes JF - International Journal of Molecular Sciences N2 - In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live–dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes. Y1 - 2020 U6 - http://dx.doi.org/10.3390/ijms21186704 SN - 1422-0067 N1 - Special issue: Optimization of Biomaterials for Reconstructive and Regenerative Medicine VL - 21 IS - 18 art. no. 6704 PB - MDPI CY - Basel ER - TY - JOUR A1 - Conzen, Catharina A1 - Albanna, Walid A1 - Weiss, Miriam A1 - Kürten, David A1 - Vilser, Walthard A1 - Kotliar, Konstantin A1 - Zäske, Charlotte A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander T1 - Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes JF - Translational Stroke Research N2 - Impaired cerebral autoregulation and neurovascular coupling (NVC) contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). Retinal vessel analysis (RVA) allows non-invasive assessment of vessel dimension and NVC hereby demonstrating a predictive value in the context of various neurovascular diseases. Using RVA as a translational approach, we aimed to assess the retinal vessels in patients with SAH. RVA was performed prospectively in 24 patients with acute SAH (group A: day 5–14), in 11 patients 3 months after ictus (group B: day 90 ± 35), and in 35 age-matched healthy controls (group C). Data was acquired using a Retinal Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and NVC using flicker-light excitation. Diameter of retinal vessels—central retinal arteriolar and venular equivalent—was significantly reduced in the acute phase (p < 0.001) with gradual improvement in group B (p < 0.05). Arterial NVC of group A was significantly impaired with diminished dilatation (p < 0.001) and reduced area under the curve (p < 0.01) when compared to group C. Group B showed persistent prolonged latency of arterial dilation (p < 0.05). Venous NVC was significantly delayed after SAH compared to group C (A p < 0.001; B p < 0.05). To our knowledge, this is the first clinical study to document retinal vasoconstriction and impairment of NVC in patients with SAH. Using non-invasive RVA as a translational approach, characteristic patterns of compromise were detected for the arterial and venous compartment of the neurovascular unit in a time-dependent fashion. Recruitment will continue to facilitate a correlation analysis with clinical course and outcome. Y1 - 2018 U6 - http://dx.doi.org/10.1007/s12975-017-0585-8 SN - 1868-601X IS - 9 SP - 284 EP - 293 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Meskemper, Joshua A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Foitschik, Tina A1 - Rojas-Vega, Sandra A1 - Strüder, Heiko K. T1 - Kinematics and kinetics of handcycling propulsion at increasing workloads in able-bodied subjects JF - Sports Engineereing N2 - In Paralympic sports, biomechanical optimisation of movements and equipment seems to be promising for improving performance. In handcycling, information about the biomechanics of this sport is mainly provided by case studies. The aim of the current study was (1) to examine changes in handcycling propulsion kinematics and kinetics due to increasing workloads and (2) identify parameters that are associated with peak aerobic performance. Twelve non-disabled male competitive triathletes without handcycling experience voluntarily participated in the study. They performed an initial familiarisation protocol and incremental step test until exhaustion in a recumbent racing handcycle that was attached to an ergometer. During the incremental test, tangential crank kinetics, 3D joint kinematics, blood lactate and ratings of perceived exertion (local and global) were identified. As a performance criterion, the maximal power output during the step test (Pmax) was calculated and correlated with biomechanical parameters. For higher workloads, an increase in crank torque was observed that was even more pronounced in the pull phase than in the push phase. Furthermore, participants showed an increase in shoulder internal rotation and abduction and a decrease in elbow flexion and retroversion. These changes were negatively correlated with performance. At high workloads, it seems that power output is more limited by the transition from pull to push phase than at low workloads. It is suggested that successful athletes demonstrate small alterations of their kinematic profile due to increasing workloads. Future studies should replicate and expand the test spectrum (sprint and continuous loads) as well as use methods like surface electromyography (sEMG) with elite handcyclists. Y1 - 2018 U6 - http://dx.doi.org/10.1007/s12283-018-0269-y SN - 1460-2687 VL - 21 IS - 21 SP - 283 EP - 294 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Neumaier, Felix A1 - Weiss, Miriam A1 - Veldeman, Michael A1 - Kotliar, Konstantin A1 - Wiesmann, Martin A1 - Schulze-Steinen, Henna A1 - Höllig, Anke A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander A1 - Albanna, Walid T1 - Changes in endogenous daytime melatonin levels after aneurysmal subarachnoid hemorrhage – preliminary findings from an observational cohort study JF - Clinical Neurology and Neurosurgery N2 - Aneurysmal subarachnoid hemorrhage (aSAH) is associated with early and delayed brain injury due to several underlying and interrelated processes, which include inflammation, oxidative stress, endothelial, and neuronal apoptosis. Treatment with melatonin, a cytoprotective neurohormone with anti-inflammatory, anti-oxidant and anti-apoptotic effects, has been shown to attenuate early brain injury (EBI) and to prevent delayed cerebral vasospasm in experimental aSAH models. Less is known about the role of endogenous melatonin for aSAH outcome and how its production is altered by the pathophysiological cascades initiated during EBI. In the present observational study, we analyzed changes in melatonin levels during the first three weeks after aSAH. KW - constructive alignment KW - examination KW - long-term retention KW - multimodal KW - practical learning Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.clineuro.2021.106870 SN - 0303-8467 VL - 208 IS - Article No.: 106870 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Brockhaus, Moritz K. A1 - Behbahani, Mehdi A1 - Muris, Farina A1 - Jansen, Sebastian V. A1 - Schmitz- Rode, Thomas A1 - Steinseifer, Ulrich A1 - Clauser, Johanna C. T1 - In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proof-of-concept JF - Artificial Organs N2 - Thrombogenic complications are a main issue in mechanical circulatory support (MCS). There is no validated in vitro method available to quantitatively assess the thrombogenic performance of pulsatile MCS devices under realistic hemodynamic conditions. The aim of this study is to propose a method to evaluate the thrombogenic potential of new designs without the use of complex in-vivo trials. This study presents a novel in vitro method for reproducible thrombogenicity testing of pulsatile MCS systems using low molecular weight heparinized porcine blood. Blood parameters are continuously measured with full blood thromboelastometry (ROTEM; EXTEM, FIBTEM and a custom-made analysis HEPNATEM). Thrombus formation is optically observed after four hours of testing. The results of three experiments are presented each with two parallel loops. The area of thrombus formation inside the MCS device was reproducible. The implantation of a filter inside the loop catches embolizing thrombi without a measurable increase of platelet activation, allowing conclusions of the place of origin of thrombi inside the device. EXTEM and FIBTEM parameters such as clotting velocity (α) and maximum clot firmness (MCF) show a total decrease by around 6% with a characteristic kink after 180 minutes. HEPNATEM α and MCF rise within the first 180 minutes indicate a continuously increasing activation level of coagulation. After 180 minutes, the consumption of clotting factors prevails, resulting in a decrease of α and MCF. With the designed mock loop and the presented protocol we are able to identify thrombogenic hot spots inside a pulsatile pump and characterize their thrombogenic potential. Y1 - 2021 U6 - http://dx.doi.org/10.1111/aor.14046 SN - 1525-1594 VL - 45 IS - 12 SP - 1513 EP - 1521 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hackl, Michael A1 - Buess, Eduard A1 - Kammerlohr, Sandra A1 - Nacov, Julia A1 - Staat, Manfred A1 - Leschinger, Tim A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model JF - The american journal of sports medicine N2 - Background: Additional stabilization of the “comma sign” in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign–directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome. Y1 - 2021 U6 - http://dx.doi.org/10.1177/03635465211031506 SN - 1552-3365 SN - 0363-5465 VL - 49 IS - 12 SP - 3212 EP - 3217 PB - Sage CY - London ER - TY - JOUR A1 - Staat, Manfred T1 - An extension strain type Mohr–Coulomb criterion JF - Rock mechanics and rock engineering N2 - Extension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion. Y1 - 2021 U6 - http://dx.doi.org/10.1007/s00603-021-02608-7 SN - 1434-453X N1 - Corresponding author: Manfred Staat VL - 54 IS - 12 SP - 6207 EP - 6233 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Topçu, Murat A1 - Madabhushi, Gopal S.P. A1 - Staat, Manfred T1 - A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius JF - International Journal of Solids and Structures N2 - A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.ijsolstr.2022.111464 SN - 0020-7683 VL - 239–240 IS - Art. No. 111464 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Mandekar, Swati A1 - Holland, Abigail A1 - Thielen, Moritz A1 - Behbahani, Mehdi A1 - Melnykowycz, Mark T1 - Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG JF - Sensors N2 - Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG. KW - in-ear EEG KW - correlation KW - forehead EEG KW - impedance spectroscopy KW - biopotential electrodes Y1 - 2022 U6 - http://dx.doi.org/10.3390/s22041568 SN - 1424-8220 VL - 22 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Defosse, Jerome A1 - Kleinschmidt, Joris A1 - Schmutz, Axel A1 - Loop, Torsten A1 - Staat, Manfred A1 - Gatzweiler, Karl-Heinz A1 - Wappler, Frank A1 - Schieren, Mark T1 - Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study JF - Journal of Cardiothoracic and Vascular Anesthesia KW - anaesthetic complications KW - dental trauma KW - difficult airway KW - double-lumen tube intubation KW - videolaryngoscopy Y1 - 2022 U6 - http://dx.doi.org/10.1053/j.jvca.2022.02.017 SN - 1053-0770 VL - 36 IS - 8, Part B SP - 3021 EP - 3027 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Bhattarai, Aroj A1 - May, Charlotte Anabell A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Layer-specific damage modeling of porcine large intestine under biaxial tension JF - Bioengineering N2 - The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads. KW - biaxial tensile experiment KW - anisotropy KW - hyperelastic KW - constitutive modeling KW - damage Y1 - 2022 U6 - http://dx.doi.org/10.3390/bioengineering9100528 SN - 2306-5354 N1 - Der Artikel gehört zum Sonderheft "Computational Biomechanics" VL - 9 IS - 10, Early Access SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Colombo, Daniele A1 - Drira, Slah A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis JF - International Journal for Numerical Methods in Engineering N2 - Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element. KW - distorted element KW - ES-FEM KW - FS-FEM KW - non-simplex S-FEM elements KW - S-FEM Y1 - 2022 U6 - http://dx.doi.org/10.1002/nme.7126 SN - 1097-0207 VL - 124 IS - 2 SP - 402 EP - 433 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Ortner, Marion A1 - Conradi, Anna A1 - Hacker, Patricia A1 - Hauser, Christine A1 - Günthner, Roman A1 - Moser, Michaela A1 - Muggenthaler, Claudia A1 - Diehl-Schmid, Janine A1 - Priller, Josef A1 - Schmaderer, Christoph A1 - Grimmer, Timo T1 - Altered retinal cerebral vessel oscillation frequencies in Alzheimer's disease compatible with impaired amyloid clearance JF - Neurobiology of Aging N2 - Retinal vessels are similar to cerebral vessels in their structure and function. Moderately low oscillation frequencies of around 0.1 Hz have been reported as the driving force for paravascular drainage in gray matter in mice and are known as the frequencies of lymphatic vessels in humans. We aimed to elucidate whether retinal vessel oscillations are altered in Alzheimer's disease (AD) at the stage of dementia or mild cognitive impairment (MCI). Seventeen patients with mild-to-moderate dementia due to AD (ADD); 23 patients with MCI due to AD, and 18 cognitively healthy controls (HC) were examined using Dynamic Retinal Vessel Analyzer. Oscillatory temporal changes of retinal vessel diameters were evaluated using mathematical signal analysis. Especially at moderately low frequencies around 0.1 Hz, arterial oscillations in ADD and MCI significantly prevailed over HC oscillations and correlated with disease severity. The pronounced retinal arterial vasomotion at moderately low frequencies in the ADD and MCI groups would be compatible with the view of a compensatory upregulation of paravascular drainage in AD and strengthen the amyloid clearance hypothesis. KW - Alzheimer's disease KW - Retinal vessel analysis KW - Vasomotions KW - Pulsations KW - Mild cognitive impairment Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.neurobiolaging.2022.08.012 SN - 0197-4580 VL - 120 SP - 117 EP - 127 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bayer, Robin A1 - Temiz Artmann, Aysegül A1 - Digel, Ilya A1 - Falkenstein, Julia A1 - Artmann, Gerhard A1 - Creutz, Till A1 - Hescheler, Jürgen T1 - Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model JF - Cellular Physiology and Biochemistry N2 - Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5% and 50nM verapamil by 2,8%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis. Y1 - 2020 U6 - http://dx.doi.org/10.33594/000000225 SN - 1421-9778 VL - 54 SP - 371 EP - 383 PB - Cell Physiol Biochem Press CY - Düsseldorf ER - TY - JOUR A1 - Akimbekov, Nuraly A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Tastambek, Kuanysh T1 - Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data JF - Biofuels N2 - The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24% of crude lignite (5% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe–mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health. KW - humic acid KW - Bacillus sp KW - lignite KW - Biosolubilization Y1 - 2021 SN - 1759-7277 VL - 12 IS - 3 SP - 247 EP - 258 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Meskemper, Joshua A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants JF - European Journal of Applied Physiology N2 - Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training. Y1 - 2020 U6 - http://dx.doi.org/10.1007/s00421-020-04373-x SN - 1439-6327 IS - 120 SP - 1403 EP - 1415 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Knox, Ronald A1 - Bruggemann, Andrea A1 - Gossmann, Matthias A1 - Thomas, Ulrich A1 - Horváth, András A1 - Dragicevic, Elena A1 - Stoelzle-Feix, Sonja A1 - Fertig, Niels A1 - Jung, Alexander A1 - Raman, Aravind Hariharan A1 - Staat, Manfred A1 - Linder, Peter T1 - Combining physiological relevance and throughput for in vitro cardiac contractility measurement JF - Biophysical Journal N2 - Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.bpj.2019.11.3104 SN - 0006-3495 N1 - Raman, Arayind Hariharan im Artikel unter dem Namen: Raman, Alexander H. VL - 118 IS - Issue 3, Supplement 1 SP - 570a PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ermolaev, A.P. A1 - Nivokov, I.A. A1 - Melnikova, L.I. A1 - Kotliar, Konstantin T1 - Сравнительная характеристика химического состава витреального содержимого кадаверных глаз и глаз с рефрактерной терминальной глаукомой T1 - Comparative characteristics of the chemical composition of vitreal contents of cadaver eyes and eyes with terminal refractory glaucoma JF - Vestnik oftalmologii N2 - Purpose — to compare the chemical elemental composition of vitreous cavity content taken from cadaveric eyes compared to samples taken from the eyes with terminal stage refractory glaucoma with decompensated intraocular pressure (IOP). Material and methods. The vitreous contents of the eyes from 2 groups were studied. The 1st group included 15 cadaveric eyes; the 2nd group included 15 eyes with refractory glaucoma in the terminal stage of the disease with decompensated IOP in patients with hypertension pain. The vitreal content samples were taken in the course of antiglaucoma surgery aimed at preserving the eye as an organ and involving employment of drainage in the vitreous cavity. The study of virtual contents was carried out on energy dispersive spectrometer Oxford X-Max 50 integrated into scanning electron microscope Zeiss EVO LS10. Results. Increased concentrations of Kalium and Phosphorus were detected in the vitreous content of cadaveric eyes compared with the vitreal content from the eyes with terminal glaucoma with decompensated IOP taken in vivo (K — 0.172/0.093; P — 0.045/0.025 mmol/L). In the vitreous cavity in the eyes with end-stage glaucoma with decompensated IOP, the concentration of Nitrogen was higher in comparison with human cadaver eyes (2.030/1.424 mmol/L). Conclusion. The increased concentrations of Kalium and Phosphorus in the vitreous content of cadaveric eyes is associated with postmortem autolytic processes and with the release of intracellular content in the destruction of cell membranes. The increased Nitrogen concentration in the vitreal contents of the eyes with terminal stage glaucoma with decompensated IOP may be associated with the presence of osmotically active nitrogen-containing compounds in the eyes with increased IOP. Y1 - 2018 U6 - http://dx.doi.org/10.17116/oftalma2018134051195 VL - 5 IS - 2 SP - 195 EP - 201 PB - Media Sfera CY - Moskau ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Cronin, Neil J. A1 - Albracht, Kirsten A1 - Bojsen-Møller, Jens A1 - Seynnes, Olivier R. T1 - Distinct muscle-tendon interaction during running at different speeds and in different loading conditions JF - Journal of Applied Physiology Y1 - 2019 U6 - http://dx.doi.org/10.1152/japplphysiol.00710.2018 SN - 1522-1601 VL - 127 IS - 1 SP - 246 EP - 253 ER - TY - JOUR A1 - Attar, Mandana Hossein Zadeh A1 - Merk, Hans F. A1 - Kotliar, Konstantin A1 - Wurpts, Gerda A1 - Röseler, Stefani A1 - Moll-Slodowy, Silke A1 - Plange, Johann A1 - Baron, Jens Malte A1 - Balakirski, Galina T1 - The CD63 basophil activation test as a diagnostic tool for assessing autoimmunity in patients with chronic spontaneous urticaria JF - European Journal of Dermatology Y1 - 2019 U6 - http://dx.doi.org/10.1684/ejd.2019.3680 VL - 29 IS - 6 SP - 614 EP - 618 ER - TY - JOUR A1 - Malik, A. M. A1 - Abdieva, G. Zh. A1 - Ualieva, P. S. A1 - Zhubanova, A. A. A1 - Temiz Artmann, Aysegül T1 - CКPИНИНГ МИКPOOPГAНИЗМOВ-ДECТPУКТOPOВ XЛOРOPГAНИЧECКИX ЗAГPЯЗНИТEЛEЙ T1 - Screening of microorganisms – destructors of chlororganic pollutants JF - Eurasian Journal of Ecology Y1 - 2019 SN - 2617-7358 VL - 61 IS - 4 SP - 61 EP - 71 ER - TY - JOUR A1 - Smith, Wayne A1 - Kotliar, Konstantin A1 - Lammertyn, Leandi A1 - Ramoshaba, Nthai E. A1 - Vilser, Walthard A1 - Huisman, Hugo W. A1 - Schutte, Aletta E. T1 - Retinal vessel caliber and caliber responses in true normotensive black and white adults: The African-PREDICT study JF - Microvascular Research N2 - Purpose Globally, a detrimental shift in cardiovascular disease risk factors and a higher mortality level are reported in some black populations. The retinal microvasculature provides early insight into the pathogenesis of systemic vascular diseases, but it is unclear whether retinal vessel calibers and acute retinal vessel functional responses differ between young healthy black and white adults. Methods We included 112 black and 143 white healthy normotensive adults (20–30 years). Retinal vessel calibers (central retinal artery and vein equivalent (CRAE and CRVE)) were calculated from retinal images and vessel caliber responses to flicker light induced provocation (FLIP) were determined. Additionally, ambulatory blood pressure (BP), anthropometry and blood samples were collected. Results The groups displayed similar 24 h BP profiles and anthropometry (all p > .24). Black participants demonstrated a smaller CRAE (158 ± 11 vs. 164 ± 11 MU, p < .001) compared to the white group, whereas CRVE was similar (p = .57). In response to FLIP, artery maximal dilation was greater in the black vs. white group (5.6 ± 2.1 vs. 3.3 ± 1.8%; p < .001). Conclusions Already at a young age, healthy black adults showed narrower retinal arteries relative to the white population. Follow-up studies are underway to show if this will be related to increased risk for hypertension development. The reason for the larger vessel dilation responses to FLIP in the black population is unclear and warrants further investigation. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.mvr.2019.103937 SN - 0026-2862 VL - 128 IS - Article 103937 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Streese, Lukas A1 - Kotliar, Konstantin A1 - Deiseroth, Arne A1 - Infanger, Denis A1 - Gugleta, Konstantin A1 - Schmaderer, Christoph A1 - Hanssen, Henner T1 - Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial JF - Scandinavian Journal of Medicine and Science in Sports N2 - The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1%, post: 3.0 ± 2.2%, P = .018) and AFarea (pre: 32.6 ± 28.4%*s, post: 37.7 ± 30.6%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8%, post: 2.9 ± 1.8%, P = .254; AFarea, pre: 41.6 ± 28.5%*s, post: 37.8 ± 27.0%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk. Y1 - 2020 U6 - http://dx.doi.org/10.1111/sms.13560 SN - 1600-0838 VL - 30 IS - 2 SP - 272 EP - 280 PB - Wiley CY - Oxford ER - TY - JOUR A1 - Hamou, Hussam Aldin A1 - Kotliar, Konstantin A1 - Tan, Sonny Kian A1 - Weiß, Christel A1 - Blume, Christian A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander A1 - Albanna, Walid T1 - Surgical nuances and placement of subgaleal drains for supratentorial procedures—a prospective analysis of efficacy and outcome in 150 craniotomies JF - Acta Neurochirurgica N2 - Background For supratentorial craniotomy, surgical access, and closure technique, including placement of subgaleal drains, may vary considerably. The influence of surgical nuances on postoperative complications such as cerebrospinal fluid leakage or impaired wound healing overall remains largely unclear. With this study, we are reporting our experiences and the impact of our clinical routines on outcome in a prospectively collected data set. Method We prospectively observed 150 consecutive patients undergoing supratentorial craniotomy and recorded technical variables (type/length of incision, size of craniotomy, technique of dural and skin closure, type of dressing, and placement of subgaleal drains). Outcome variables (subgaleal hematoma/CSF collection, periorbital edema, impairment of wound healing, infection, and need for operative revision) were recorded at time of discharge and at late follow-up. Results Early subgaleal fluid collection was observed in 36.7% (2.8% at the late follow-up), and impaired wound healing was recorded in 3.3% of all cases, with an overall need for operative revision of 6.7%. Neither usage of dural sealants, lack of watertight dural closure, and presence of subgaleal drains, nor type of skin closure or dressing influenced outcome. Curved incisions, larger craniotomy, and tumor size, however, were associated with an increase in early CSF or hematoma collection (p < 0.0001, p = 0.001, p < 0.01 resp.), and larger craniotomy size was associated with longer persistence of subgaleal fluid collections (p < 0.05). Conclusions Based on our setting, individual surgical nuances such as the type of dural closure and the use of subgaleal drains resulted in a comparable complication rate and outcome. Subgaleal fluid collections were frequently observed after supratentorial procedures, irrespective of the closing technique employed, and resolve spontaneously in the majority of cases without significant sequelae. Our results are limited due to the observational nature in our single-center study and need to be validated by supportive prospective randomized design. Y1 - 2020 U6 - http://dx.doi.org/10.1007/s00701-019-04196-6 SN - 0942-0940 VL - 2020 IS - 162 SP - 729 EP - 736 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Rausch, Valentin A1 - Kahmann, Stephanie Lucina A1 - Baltschun, Christoph A1 - Staat, Manfred A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study JF - The Journal of Hand Surgery N2 - Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.jhsa.2020.01.006 SN - 0363-5023 VL - 45 IS - 8 SP - 776.e1 EP - 776.e9 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Digel, Ilya A1 - Kern, Inna A1 - Geenen, Eva-Maria A1 - Akimbekov, Nuraly T1 - Dental plaque removal by ultrasonic toothbrushes JF - dentistry journal N2 - With the variety of toothbrushes on the market, the question arises, which toothbrush is best suited to maintain oral health? This thematic review focuses first on plaque formation mechanisms and then on the plaque removal effectiveness of ultrasonic toothbrushes and their potential in preventing oral diseases like periodontitis, gingivitis, and caries. We overviewed the physical effects that occurred during brushing and tried to address the question of whether ultrasonic toothbrushes effectively reduced the microbial burden by increasing the hydrodynamic forces. The results of published studies show that electric toothbrushes, which combine ultrasonic and sonic (or acoustic and mechanic) actions, may have the most promising effect on good oral health. Existing ultrasonic/sonic toothbrush models do not significantly differ regarding the removal of dental biofilm and the reduction of gingival inflammation compared with other electrically powered toothbrushes, whereas the manual toothbrushes show a lower effectiveness. Y1 - 2020 U6 - http://dx.doi.org/10.3390/dj8010028 SN - 2304-6767 VL - 8 IS - 28 SP - 1 EP - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Abel, Alexander A1 - Kahmann, Stephanie Lucina A1 - Mellon, Stephen A1 - Staat, Manfred A1 - Jung, Alexander T1 - An open-source tool for the validation of finite element models using three-dimensional full-field measurements JF - Medical Engineering & Physics N2 - Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.medengphy.2019.10.015 SN - 1350-4533 VL - 77 SP - 125 EP - 129 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Waldvogel, Janice A1 - Ritzmann, Ramona A1 - Freyler, Kathrin A1 - Helm, Michael A1 - Monti, Elena A1 - Albracht, Kirsten A1 - Stäudle, Benjamin A1 - Gollhofer, Albert A1 - Narici, Marco T1 - The Anticipation of Gravity in Human Ballistic Movement JF - Frontiers in Physiology N2 - Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation. Y1 - 2021 U6 - http://dx.doi.org/10.3389/fphys.2021.614060 SN - 1664-042X PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Nguyen-Xuan, H. A1 - Rabczuk, T. A1 - Nguyen-Thoi, T. A1 - Tran, Thanh Ngoc A1 - Nguyen-Thanh, N. T1 - Computation of limit and shakedown loads using a node-based smoothed finite element method JF - International Journal for Numerical Methods in Engineering N2 - This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal–dual algorithm. An associated primal–dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal–dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods. Y1 - 2011 U6 - http://dx.doi.org/10.1002/nme.3317 SN - 1097-0207 VL - 90 IS - 3 SP - 287 EP - 310 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hackl, Michael A1 - Nacov, Julia A1 - Kammerlohr, Sandra A1 - Staat, Manfred A1 - Buess, Eduard A1 - Leschinger, Tim A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - Intratendinous Strain Variations of the Supraspinatus Tendon Depending on Repair Technique: A Biomechanical Analysis Regarding the Cause of Medial Cuff Failure JF - The American Journal of Sports Medicine Y1 - 2021 U6 - http://dx.doi.org/10.1177/03635465211006138 SN - 1552-3365 SN - 0363-5465 VL - 49 IS - 7 SP - 1847 EP - 1853 PB - Sage CY - London ER - TY - JOUR A1 - Neumaier, Felix A1 - Kotliar, Konstantin A1 - Haeren, Roel Hubert Louis A1 - Temel, Yasin A1 - Lüke, Jan Niklas A1 - Seyam, Osama A1 - Lindauer, Ute A1 - Clusmann, Hans A1 - Hescheler, Jürgen A1 - Schubert, Gerrit Alexander A1 - Schneider, Toni A1 - Albanna, Walid T1 - Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice—An in- vivo Evaluation Using Retinal Vessel Analysis (RVA) JF - Frontiers in Neurology Y1 - 2021 U6 - http://dx.doi.org/10.3389/fneur.2021.659890 VL - 12 SP - 1 EP - 11 PB - Frontiers ER - TY - JOUR A1 - Pogorelova, Natalia A1 - Rogachev, Evgeniy A1 - Digel, Ilya A1 - Chernigova, Svetlana A1 - Nardin, Dmitry T1 - Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties JF - Materials N2 - Bacterial cellulose (BC) is a promising material for biomedical applications due to its unique properties such as high mechanical strength and biocompatibility. This article describes the microbiological synthesis, modification, and characterization of the obtained BC-nanocomposites originating from symbiotic consortium Medusomyces gisevii. Two BC-modifications have been obtained: BC-Ag and BC-calcium phosphate (BC-Ca3(PO4)2). Structure and physicochemical properties of the BC and its modifications were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and infrared Fourier spectroscopy as well as by measurements of mechanical and water holding/absorbing capacities. Topographic analysis of the surface revealed multicomponent thick fibrils (150–160 nm in diameter and about 15 µm in length) constituted by 50–60 nm nanofibrils weaved into a left-hand helix. Distinctive features of Ca-phosphate-modified BC samples were (a) the presence of 500–700 nm entanglements and (b) inclusions of Ca3(PO4)2 crystals. The samples impregnated with Ag nanoparticles exhibited numerous roundish inclusions, about 110 nm in diameter. The boundaries between the organic and inorganic phases were very distinct in both cases. The Ag-modified samples also showed a prominent waving pattern in the packing of nanofibrils. The obtained BC gel films possessed water-holding capacity of about 62.35 g/g. However, the dried (to a constant mass) BC-films later exhibited a low water absorption capacity (3.82 g/g). It was found that decellularized BC samples had 2.4 times larger Young’s modulus and 2.2 times greater tensile strength as compared to dehydrated native BC films. We presume that this was caused by molecular compaction of the BC structure. Y1 - 2020 SN - 1996-1944 U6 - http://dx.doi.org/10.3390/ma13122849 VL - 13 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Morat, Mareike A1 - Faude, Oliver A1 - Hanssen, Henner A1 - Ludyga, Sebastian A1 - Zacher, Jonas A1 - Eibl, Angi A1 - Albracht, Kirsten A1 - Donath, Lars T1 - Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial JF - International Journal of Environmental Research and Public Health N2 - Exercise training effectively mitigates aging-induced health and fitness impairments. Traditional training recommendations for the elderly focus separately on relevant physiological fitness domains, such as balance, flexibility, strength and endurance. Thus, a more holistic and functional training framework is needed. The proposed agility training concept integratively tackles spatial orientation, stop and go, balance and strength. The presented protocol aims at introducing a two-armed, one-year randomized controlled trial, evaluating the effects of this concept on neuromuscular, cardiovascular, cognitive and psychosocial health outcomes in healthy older adults. Eighty-five participants were enrolled in this ongoing trial. Seventy-nine participants completed baseline testing and were block-randomized to the agility training group or the inactive control group. All participants undergo pre- and post-testing with interim assessment after six months. The intervention group currently receives supervised, group-based agility training twice a week over one year, with progressively demanding perceptual, cognitive and physical exercises. Knee extension strength, reactive balance, dual task gait speed and the Agility Challenge for the Elderly (ACE) serve as primary endpoints and neuromuscular, cognitive, cardiovascular, and psychosocial meassures serve as surrogate secondary outcomes. Our protocol promotes a comprehensive exercise training concept for older adults, that might facilitate stakeholders in health and exercise to stimulate relevant health outcomes without relying on excessively time-consuming physical activity recommendations. KW - agility KW - prevention KW - healthy aging KW - community dwelling KW - psychosocial Y1 - 2020 U6 - http://dx.doi.org/10.3390/ijerph17061853 SN - 1660-4601 VL - 17 IS - 6 SP - 1 EP - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Loeb, Horst Wolfgang A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Seboldt, Wolfgang T1 - Interstellar heliopause probe JF - Труды МАИ N2 - There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft traveling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by European Space Agency (ESA). Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope-electric propulsion (REP). As a further alternative, we here investigate a combination of solar-electric propulsion (SEP) and REP. The SEP stage consists of six 22-cms diameter RIT-22 ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW at begin of mission (BOM) is provided by a lightweight solar array. Y1 - 2012 IS - 60 SP - 2 EP - 2 PB - Moskauer Staatliches Luftfahrtinstitut (МАИ) CY - Moskau ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Staeudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, Tobias A1 - Mileva, Katya N. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity JF - npj Microgravity N2 - Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle−series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study. Y1 - 2021 U6 - http://dx.doi.org/10.1038/s41526-021-00155-7 SN - 2373-8065 N1 - Corresponding author: Charlotte Richter VL - 7 IS - Article number: 32 PB - Springer Nature CY - New York ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Horbach, Andreas A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Virgin passive colon biomechanics and a literature review of active contraction constitutive models JF - Biomechanics N2 - The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine. KW - virgin passive KW - strain energy function KW - smooth muscle contraction KW - viscoelasticity KW - damage Y1 - 2022 U6 - http://dx.doi.org/10.3390/biomechanics2020013 SN - 2673-7078 VL - 2 IS - 2 SP - 138 EP - 157 PB - MDPI CY - Basel ER - TY - JOUR A1 - Dachwald, Bernd T1 - Optimization of very-low-thrust trajectories using evolutionary neurocontrol JF - Acta Astronautica N2 - Searching optimal interplanetary trajectories for low-thrust spacecraft is usually a difficult and time-consuming task that involves much experience and expert knowledge in astrodynamics and optimal control theory. This is because the convergence behavior of traditional local optimizers, which are based on numerical optimal control methods, depends on an adequate initial guess, which is often hard to find, especially for very-low-thrust trajectories that necessitate many revolutions around the sun. The obtained solutions are typically close to the initial guess that is rarely close to the (unknown) global optimum. Within this paper, trajectory optimization problems are attacked from the perspective of artificial intelligence and machine learning. Inspired by natural archetypes, a smart global method for low-thrust trajectory optimization is proposed that fuses artificial neural networks and evolutionary algorithms into so-called evolutionary neurocontrollers. This novel method runs without an initial guess and does not require the attendance of an expert in astrodynamics and optimal control theory. This paper details how evolutionary neurocontrol works and how it could be implemented. The performance of the method is assessed for three different interplanetary missions with a thrust to mass ratio <0.15mN/kg (solar sail and nuclear electric). Y1 - 2005 SN - 1879-2030 VL - 57 IS - 2-8 SP - 175 EP - 185 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Peloni, Alessandro A1 - Ceriotti, Matteo A1 - Dachwald, Bernd T1 - Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission JF - Journal of Guidance, Control, and Dynamics N2 - The scientific interest for near-Earth asteroids as well as the interest in potentially hazardous asteroids from the perspective of planetary defense led the space community to focus on near-Earth asteroid mission studies. A multiple near-Earth asteroid rendezvous mission with close-up observations of several objects can help to improve the characterization of these asteroids. This work explores the design of a solar-sail spacecraft for such a mission, focusing on the search of possible sequences of encounters and the trajectory optimization. This is done in two sequential steps: a sequence search by means of a simplified trajectory model and a set of heuristic rules based on astrodynamics, and a subsequent optimization phase. A shape-based approach for solar sailing has been developed and is used for the first phase. The effectiveness of the proposed approach is demonstrated through a fully optimized multiple near-Earth asteroid rendezvous mission. The results show that it is possible to visit five near-Earth asteroids within 10 years with near-term solar-sail technology. Y1 - 2016 U6 - http://dx.doi.org/10.2514/1.G000470 SN - 0731-5090 VL - 39 IS - 12 SP - 2712 EP - 2724 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - FEM shakedown analysis of structures under random strength with chance constrained programming JF - Vietnam Journal of Mechanics N2 - Direct methods, comprising limit and shakedown analysis, are a branch of computational mechanics. They play a significant role in mechanical and civil engineering design. The concept of direct methods aims to determine the ultimate load carrying capacity of structures beyond the elastic range. In practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and constraints. If strength and loading are random quantities, the shakedown analysis can be formulated as stochastic programming problem. In this paper, a method called chance constrained programming is presented, which is an effective method of stochastic programming to solve shakedown analysis problems under random conditions of strength. In this study, the loading is deterministic, and the strength is a normally or lognormally distributed variable. KW - limit analysis KW - shakedown analysis KW - chance constrained programming KW - stochastic programming KW - reliability of structures Y1 - 2022 U6 - http://dx.doi.org/10.15625/0866-7136/17943 SN - 0866-7136 SN - 2815-5882 VL - 44 IS - 4 SP - 459 EP - 473 PB - Vietnam Academy of Science and Technology (VAST) ER - TY - JOUR A1 - Angermann, Susanne A1 - Günthner, Roman A1 - Hanssen, Henner A1 - Lorenz, Georg A1 - Braunisch, Matthias C. A1 - Steubl, Dominik A1 - Matschkal, Julia A1 - Kemmner, Stephan A1 - Hausinger, Renate A1 - Block, Zenonas A1 - Haller, Bernhard A1 - Heemann, Uwe A1 - Kotliar, Konstantin A1 - Grimmer, Timo A1 - Schmaderer, Christoph T1 - Cognitive impairment and microvascular function in end-stage renal disease JF - International Journal of Methods in Psychiatric Research (MPR) N2 - Objective Hemodialysis patients show an approximately threefold higher prevalence of cognitive impairment compared to the age-matched general population. Impaired microcirculatory function is one of the assumed causes. Dynamic retinal vessel analysis is a quantitative method for measuring neurovascular coupling and microvascular endothelial function. We hypothesize that cognitive impairment is associated with altered microcirculation of retinal vessels. Methods 152 chronic hemodialysis patients underwent cognitive testing using the Montreal Cognitive Assessment. Retinal microcirculation was assessed by Dynamic Retinal Vessel Analysis, which carries out an examination recording retinal vessels' reaction to a flicker light stimulus under standardized conditions. Results In unadjusted as well as in adjusted linear regression analyses a significant association between the visuospatial executive function domain score of the Montreal Cognitive Assessment and the maximum arteriolar dilation as response of retinal arterioles to the flicker light stimulation was obtained. Conclusion This is the first study determining retinal microvascular function as surrogate for cerebral microvascular function and cognition in hemodialysis patients. The relationship between impairment in executive function and reduced arteriolar reaction to flicker light stimulation supports the involvement of cerebral small vessel disease as contributing factor for the development of cognitive impairment in this patient population and might be a target for noninvasive disease monitoring and therapeutic intervention. KW - cerebral small vessel disease KW - cognitive impairment KW - dialysis KW - retinal vessels Y1 - 2022 U6 - http://dx.doi.org/10.1002/mpr.1909 SN - 1049-8931 (Print) SN - 1557-0657 (Online) VL - 31 IS - 2 SP - 1 EP - 10 PB - Wiley ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Sherelkhan, Dinara K. A1 - Jussupova, Dariya B. A1 - Altynbay, Nazym P. T1 - Low-rank coal as a source of humic substances for soil amendment and fertility management JF - Agriculture N2 - Humic substances (HS), as important environmental components, are essential to soil health and agricultural sustainability. The usage of low-rank coal (LRC) for energy generation has declined considerably due to the growing popularity of renewable energy sources and gas. However, their potential as soil amendment aimed to maintain soil quality and productivity deserves more recognition. LRC, a highly heterogeneous material in nature, contains large quantities of HS and may effectively help to restore the physicochemical, biological, and ecological functionality of soil. Multiple emerging studies support the view that LRC and its derivatives can positively impact the soil microclimate, nutrient status, and organic matter turnover. Moreover, the phytotoxic effects of some pollutants can be reduced by subsequent LRC application. Broad geographical availability, relatively low cost, and good technical applicability of LRC offer the advantage of easy fulfilling soil amendment and conditioner requirements worldwide. This review analyzes and emphasizes the potential of LRC and its numerous forms/combinations for soil amelioration and crop production. A great benefit would be a systematic investment strategy implicating safe utilization and long-term application of LRC for sustainable agricultural production. KW - soil remediation KW - crop yield KW - soil health KW - soil amendment KW - low-rank coal Y1 - 2021 U6 - http://dx.doi.org/10.3390/agriculture11121261 SN - 2077-0472 N1 - This article belongs to the Special Issue "From Waste to Fertilizer in Sustainable Agriculture" VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - http://dx.doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Cronin, Neil J. A1 - Albracht, Kirsten A1 - Paulsen, Gøran A1 - Larsen, Askild V. A1 - Bojsen-Møller, Jens A1 - Seynnes, Olivier R. T1 - Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running JF - PeerJ N2 - Background During the stance phase of running, the elasticity of the Achilles tendon enables the utilisation of elastic energy and allows beneficial contractile conditions for the triceps surae muscles. However, the effect of changes in tendon mechanical properties induced by chronic loading is still poorly understood. We tested the hypothesis that a training-induced increase in Achilles tendon stiffness would result in reduced tendon strain during the stance phase of running, which would reduce fascicle strains in the triceps surae muscles, particularly in the mono-articular soleus. Methods Eleven subjects were assigned to a training group performing isometric singleleg plantarflexion contractions three times per week for ten weeks, and another ten subjects formed a control group. Before and after the training period, Achilles tendon stiffness was estimated, and muscle-tendon mechanics were assessed during running at preferred speed using ultrasonography, kinematics and kinetics. Results Achilles tendon stiffness increased by 18% (P <0:01) in the training group, but the associated reduction in strain seen during isometric contractions was not statistically significant. Tendon elongation during the stance phase of running was similar after training, but tendon recoil was reduced by 30% (P <0:01), while estimated tendon force remained unchanged. Neither gastrocnemius medialis nor soleus fascicle shortening during stance was affected by training. Discussion These results show that a training-induced increase in Achilles tendon stiffness altered tendon behaviour during running. Despite training-induced changes in tendon mechanical properties and recoil behaviour, the data suggest that fascicle shortening patterns were preserved for the running speed that we examined. The asymmetrical changes in tendon strain patterns supports the notion that simple inseries models do not fully explain the mechanical output of the muscle-tendon unit during a complex task like running. KW - Achilles tendon KW - Stiffness KW - Running KW - Tendon properties KW - Architectural gear ratio Y1 - 2019 U6 - http://dx.doi.org/10.7717/peerj.6764 SN - 21678359 PB - Peer CY - London ER - TY - JOUR A1 - Ketelhut, Maike A1 - Göll, Fabian A1 - Braunstein, Björn A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Comparison of different training algorithms for the leg extension training with an industrial robot JF - Current Directions in Biomedical Engineering N2 - In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot’s acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption. KW - Rehabilitation Technology and Prosthetics KW - Surgical Navigation and Robotics Y1 - 2018 U6 - http://dx.doi.org/10.1515/cdbme-2018-0005 SN - 2364-5504 VL - 4 IS - 1 SP - 17 EP - 20 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Savitskaya, Irina A1 - Zhantlessova, Sirina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Shokatayeva, Dina A1 - Sinyavsky, Yuriy A1 - Kushugulova, Almagul A1 - Digel, Ilya T1 - Prebiotic cellulose–pullulan matrix as a “vehicle” for probiotic biofilm delivery to the host large intestine JF - Polymers N2 - This study describes the development of a new combined polysaccharide-matrix-based technology for the immobilization of Lactobacillus rhamnosus GG (LGG) bacteria in biofilm form. The new composition allows for delivering the bacteria to the digestive tract in a manner that improves their robustness compared with planktonic cells and released biofilm cells. Granules consisting of a polysaccharide matrix with probiotic biofilms (PMPB) with high cell density (>9 log CFU/g) were obtained by immobilization in the optimized nutrient medium. Successful probiotic loading was confirmed by fluorescence microscopy and scanning electron microscopy. The developed prebiotic polysaccharide matrix significantly enhanced LGG viability under acidic (pH 2.0) and bile salt (0.3%) stress conditions. Enzymatic extract of feces, mimicking colon fluid in terms of cellulase activity, was used to evaluate the intestinal release of probiotics. PMPB granules showed the ability to gradually release a large number of viable LGG cells in the model colon fluid. In vivo, the oral administration of PMPB granules in rats resulted in the successful release of probiotics in the colon environment. The biofilm-forming incubation method of immobilization on a complex polysaccharide matrix tested in this study has shown high efficacy and promising potential for the development of innovative biotechnologies. KW - immobilization KW - prebiotic KW - bacterial cellulose KW - biofilms KW - Lactobacillus rhamnosus GG Y1 - 2023 U6 - http://dx.doi.org/10.3390/polym16010030 N1 - This article belongs to the Section "Polymer Composites and Nanocomposites" IS - 16(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Albracht, Kirsten A1 - Cronin, Neil J A1 - Paulsen, Gøran A1 - Bojsen-Møller, Jens A1 - Seynnes, Olivier R T1 - Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing JF - Frontiers in physiology N2 - During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation. KW - achilles tendon KW - energy absorption KW - energy dissipation KW - mechanical buffer KW - stiffness Y1 - 2018 U6 - http://dx.doi.org/10.3389/fphys.2018.00794 SN - 1664-042X IS - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Yang, Peng-Fei A1 - Kriechbaumer, Andreas A1 - Albracht, Kirsten A1 - Sanno, Maximilian A1 - Ganse, Bergita A1 - Koy, Timmo A1 - Shang, Peng A1 - brüggemann, Gert-Peter A1 - Müller, Lars Peter A1 - Rittweger, Jörn T1 - A novel optical approach for assessing in vivo bone segment deformation and its application in muscle-bone relationship studies in humans JF - Journal of Orthopaedic Translation Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.jot.2014.07.078 SN - 2214-0328 SN - 2214-031X VL - 2 IS - 4 SP - 238 EP - 238 PB - Elsevier CY - Singapore ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking JF - Frontiers in Physiology N2 - Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s–1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task. KW - tendon rupture KW - muscle fascicle behavior KW - walking gait KW - force generation KW - ultrasound imaging Y1 - 2022 U6 - http://dx.doi.org/10.3389/fphys.2022.792576 SN - 1664-042X VL - 13 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, Tobias A1 - Mileva, Katja N. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - Gastrocnemius medialis contractile behavior is preserved during 30% body weight supported gait training JF - Frontiers in Sports and Active Living N2 - Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75% of the speed at which they typically transition to running, with 0% and 30% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle–tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle–tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle–series elastic element behavior. Walking with 30% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle–tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle–series elastic element behavior was observed during walking with 30% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking. KW - AlterG KW - rehabilitation KW - gait KW - walking KW - ultrasound imaging KW - series elastic element behavior KW - muscle fascicle behavior KW - unloading Y1 - 2021 U6 - http://dx.doi.org/10.3389/fspor.2020.614559 SN - 2624-9367 VL - 2021 IS - 2 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Strüder, Heiko K. T1 - Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants JF - Sports Biomechanics N2 - This study aims to quantify the kinematics, kinetics and muscular activity of all-out handcycling exercise and examine their alterations during the course of a 15-s sprint test. Twelve able-bodied competitive triathletes performed a 15-s all-out sprint test in a recumbent racing handcycle that was attached to an ergometer. During the sprint test, tangential crank kinetics, 3D joint kinematics and muscular activity of 10 muscles of the upper extremity and trunk were examined using a power metre, motion capturing and surface electromyography (sEMG), respectively. Parameters were compared between revolution one (R1), revolution two (R2), the average of revolution 3 to 13 (R3) and the average of the remaining revolutions (R4). Shoulder abduction and internal-rotation increased, whereas maximal shoulder retroversion decreased during the sprint. Except for the wrist angles, angular velocity increased for every joint of the upper extremity. Several muscles demonstrated an increase in muscular activation, an earlier onset of muscular activation in crank cycle and an increased range of activation. During the course of a 15-s all-out sprint test in handcycling, the shoulder muscles and the muscles associated to the push phase demonstrate indications for short-duration fatigue. These findings are helpful to prevent injuries and improve performance in all-out handcycling. KW - Handbike KW - sEMG KW - Paralympic sport KW - performance testing KW - high-intensity exercise Y1 - 2022 U6 - http://dx.doi.org/10.1080/14763141.2020.1745266 SN - 1752-6116 (Onlineausgabe) SN - 1476-3141 (Druckausgabe) VL - 21 IS - 10 SP - 1200 EP - 1223 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Björn A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Süss, Alexander A1 - Weber, Tobias A1 - Mileva, Katya N. A1 - Rittweger, Jörn A1 - Green, David A. A1 - Albracht, Kirsten T1 - Gastrocnemius medialis contractile behavior during running differs between simulated Lunar and Martian gravities JF - Scientific reports N2 - The international partnership of space agencies has agreed to proceed forward to the Moon sustainably. Activities on the Lunar surface (0.16 g) will allow crewmembers to advance the exploration skills needed when expanding human presence to Mars (0.38 g). Whilst data from actual hypogravity activities are limited to the Apollo missions, simulation studies have indicated that ground reaction forces, mechanical work, muscle activation, and joint angles decrease with declining gravity level. However, these alterations in locomotion biomechanics do not necessarily scale to the gravity level, the reduction in gastrocnemius medialis activation even appears to level off around 0.2 g, while muscle activation pattern remains similar. Thus, it is difficult to predict whether gastrocnemius medialis contractile behavior during running on Moon will basically be the same as on Mars. Therefore, this study investigated lower limb joint kinematics and gastrocnemius medialis behavior during running at 1 g, simulated Martian gravity, and simulated Lunar gravity on the vertical treadmill facility. The results indicate that hypogravity-induced alterations in joint kinematics and contractile behavior still persist between simulated running on the Moon and Mars. This contrasts with the concept of a ceiling effect and should be carefully considered when evaluating exercise prescriptions and the transferability of locomotion practiced in Lunar gravity to Martian gravity. KW - Bone quality and biomechanics KW - Environmental impact KW - Skeletal muscle KW - Tendons KW - Ultrasound Y1 - 2021 U6 - http://dx.doi.org/10.1038/s41598-021-00527-9 SN - 2045-2322 N1 - Corresponding author: Charlotte Richter VL - 11 IS - Article number: 22555 PB - Springer Nature CY - London ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Willwacher, Steffen A1 - Albracht, Kirsten T1 - Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration JF - Scandinavian Journal of Medicine & Science in Sports N2 - The compliant nature of distal limb muscle-tendon units is traditionally considered suboptimal in explosive movements when positive joint work is required. However, during accelerative running, ankle joint net mechanical work is positive. Therefore, this study aims to investigate how plantar flexor muscle-tendon behavior is modulated during fast accelerations. Eleven female sprinters performed maximum sprint accelerations from starting blocks, while gastrocnemius muscle fascicle lengths were estimated using ultrasonography. We combined motion analysis and ground reaction force measurements to assess lower limb joint kinematics and kinetics, and to estimate gastrocnemius muscle-tendon unit length during the first two acceleration steps. Outcome variables were resampled to the stance phase and averaged across three to five trials. Relevant scalars were extracted and analyzed using one-sample and two-sample t-tests, and vector trajectories were compared using statistical parametric mapping. We found that an uncoupling of muscle fascicle behavior from muscle-tendon unit behavior is effectively used to produce net positive mechanical work at the joint during maximum sprint acceleration. Muscle fascicles shortened throughout the first and second steps, while shortening occurred earlier during the first step, where negative joint work was lower compared with the second step. Elastic strain energy may be stored during dorsiflexion after touchdown since fascicles did not lengthen at the same time to dissipate energy. Thus, net positive work generation is accommodated by the reuse of elastic strain energy along with positive gastrocnemius fascicle work. Our results show a mechanism of how muscles with high in-series compliance can contribute to net positive joint work. KW - locomotion KW - muscle mechanics KW - running KW - sprint start KW - ultrasonography Y1 - 2021 U6 - http://dx.doi.org/10.1111/sms.13956 SN - 0905-7188 (Druckausgabe) SN - 1600-0838 (Onlineausgabe) VL - 31 IS - 7 SP - 1471 EP - 1480 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Monti, Elena A1 - Waldvogel, Janice A1 - Ritzmann, Ramona A1 - Freyler, Kathrin A1 - Albracht, Kirsten A1 - Helm, Michael A1 - De Cesare, Niccolò A1 - Pavan, Piero A1 - Reggiani, Carlo A1 - Gollhofer, Albert A1 - Narici, Marco Vincenzo T1 - Muscle in variable gravity: “I do not know where I am, but I know what to do” JF - Frontiers in Physiology N2 - Performing tasks, such as running and jumping, requires activation of the agonist and antagonist muscles before (motor unit pre-activation) and during movement performance (Santello and Mcdonagh, 1998). A well-timed and regulated muscle activation elicits a stretch-shortening cycle (SSC) response, naturally occurring in bouncing movements (Ishikawa and Komi, 2004; Taube et al., 2012). By definition, the SSC describes the stretching of a pre-activated muscle-tendon complex immediately followed by a muscle shortening in the concentric push-off phase (Komi, 1984). Given the importance of SSC actions for human movement, it is not surprising that many studies investigated the biomechanics of this phenomenon; in particular, drop jumps (DJs) represent a good paradigm to study muscle fascicle and tendon behavior in ballistic movements involving the SSC. Within a DJ, three main phases [pre-activation, braking, and push-off (PO; Komi, 2000)] have been recognized and extensively studied in common and challenging conditions, such as changes in load, falling height, or simulated hypo-gravity (Avela et al., 1994; Arampatzis et al., 2001; Fukashiro et al., 2005; Ishikawa et al., 2005; Sousa et al., 2007; Ritzmann et al., 2016; Helm et al., 2020). These studies show that the timing and amount of triceps-surae muscle-tendon unit pre-activation in DJs are differentially regulated based on the load applied to the muscle, being optimal in normal “Earth” gravity conditions (Avela et al., 1994), but decreased in simulated hypo-gravity, hyper-gravity (Avela et al., 1994; Ritzmann et al., 2016), or unknown conditions (i.e., unknown falling heights; Helm et al., 2020). Some authors indicated that, when falling from heights different from the optimal one [defined as the drop height giving a maximum DJ performance indicated as peak ground reaction force (GRF) or jump high], electromyographic (EMG) activity of the plantar flexors increases from lower than optimal to higher than optimal heights (Ishikawa and Komi, 2004; Sousa et al., 2007). These findings highlight the ability of the central nervous system to regulate the timing and amount of pre-activation according to different jumping conditions, thus regulating muscle fascicle length, tendon and joint stiffness as well as position, in order to safely land on the ground and quickly re-bounce. Similarly, to pre-activation, also in the braking phase, the plantar flexors are differentially regulated. In optimal height (i.e., load) jumping conditions, gastrocnemius medialis (GM) fascicles shorten at early ground contact (possibly due to the intervention of the stretch reflex; Gollhofer et al., 1992) and behave quasi-isometrically in the late braking phase, enabling tendon elongation, and storage of elastic energy (Gollhofer et al., 1992; Fukashiro et al., 2005; Sousa et al., 2007). When increasing the falling height (augmenting the impact GRF), the quasi-isometric behavior of fascicles disappears, and fast fascicle lengthening occurs (Ishikawa et al., 2005; Sousa et al., 2007). In the third and last PO phase, fascicles shorten and the tendon releases the elastic energy previously stored. Bobbert et al. (1987) reported no influence of jumping height on the work done and on the net vertical impulse assessed during PO; this observation suggests that, despite an optimal DJ performance might be achieved only in specific conditions (falling heights, loads), the central nervous system seems to be able to regulate muscle behavior in order to effectively perform the required task also in challenging situations. Although the regulation of triceps-surae muscle-tendon unit in DJs has been extensively investigated, very few studies focused on sarcomeres behavior during the performance of this SSC movement (Kurokawa et al., 2003; Fukashiro et al., 2005, 2006). Sarcomeres represent muscle contractile units and are known to express different amounts of force depending on their length (Gordon et al., 1966; Walker and Schrodt, 1974); thus, understanding the time course of their responses during DJs is fundamental to gain further insights into muscle force-generating capacity. In vivo measurement of sarcomere length in humans has been so far been performed only in static positions and under highly controlled experimental conditions (Llewellyn et al., 2008; Sanchez et al., 2015). Instead, human sarcomere length estimation (achieved by dividing GM measured fascicle length for a fixed sarcomere number) in dynamic contractions provided an indirect measure of sarcomere operating range during squat jump, countermovement jump, and DJ (Fukashiro et al., 2005, 2006; Kurokawa et al., 2003). The results of these studies showed that sarcomeres operate in the ascending limb of their length-tension (L-T) relationship in all types of jumps, and particularly so in DJ. However, most of the available observations on sarcomere and muscle fascicle behavior were made in condition of constant gravity. Thus, in order to understand how sarcomere and muscle fascicle length are regulated in variable gravity conditions, we performed experiments in a parabolic flight, involving variable gravity levels, ranging from about zero-g to about double the Earth’s gravity (1 g; Waldvogel et al., 2021). Specifically, the aims of the present study were as follows: 1. To investigate the ability of the neuromuscular system in regulating fascicle length in response to conditions of variable gravity. 2. To estimate sarcomere operative length in the different DJ phases, in order to calculate its theoretical force production and its possible modulation in conditions of variable gravity. We hypothesized that muscle fascicles would be differentially regulated in different gravity conditions compared to 1 g, particularly in anticipation of landing and re-bouncing in unknown gravity levels. In addition, we hypothesized that sarcomeres would operate in the upper part of the ascending limb of their L-T relationship, possibly lengthening during the braking phase (especially in hyper-gravity) while operating quasi-isometrically in 1 g. KW - parabolic flight KW - drop jump KW - hypo-gravity KW - hyper-gravity KW - sarcomere operating length Y1 - 2021 U6 - http://dx.doi.org/10.3389/fphys.2021.714655 SN - 1664-042X VL - 12 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Göll, Fabian A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Recovery from achilles tendon repair: a combination of Postsurgery Outcomes and Insufficient remodeling of muscle and tendon JF - Medicine & Science in Sports & Exercise N2 - Achilles tendon rupture (ATR) patients have persistent functional deficits in the triceps surae muscle–tendon unit (MTU). The complex remodeling of the MTU accompanying these deficits remains poorly understood. The purpose of the present study was to associate in vivo and in silico data to investigate the relations between changes inMTU properties and strength deficits inATR patients. Methods: Elevenmale subjects who had undergone surgical repair of complete unilateral ATR were examined 4.6 ± 2.0 (mean ± SD) yr after rupture. Gastrocnemius medialis (GM) tendon stiffness, morphology, and muscle architecture were determined using ultrasonography. The force–length relation of the plantar flexor muscles was assessed at five ankle joint angles. In addition, simulations (OpenSim) of the GM MTU force–length properties were performed with various iterations of MTU properties found between the unaffected and the affected side. Results: The affected side of the patients displayed a longer, larger, and stiffer GM tendon (13% ± 10%, 105% ± 28%, and 54% ± 24%, respectively) compared with the unaffected side. The GM muscle fascicles of the affected side were shorter (32% ± 12%) and with greater pennation angles (31% ± 26%). A mean deficit in plantarflexion moment of 31% ± 10% was measured. Simulations indicate that pairing an intact muscle with a longer tendon shifts the optimal angular range of peak force outside physiological angular ranges, whereas the shorter muscle fascicles and tendon stiffening seen in the affected side decrease this shift, albeit incompletely. Conclusions: These results suggest that the substantial changes in MTU properties found in ATR patients may partly result from compensatory remodeling, although this process appears insufficient to fully restore muscle function. KW - Tendon Rupture KW - Stiffness KW - Simulation KW - Muscle Force KW - Muscle Fascicle Y1 - 2021 U6 - http://dx.doi.org/10.1249/MSS.0000000000002592 SN - 1530-0315 VL - 53 IS - 7 SP - 1356 EP - 1366 PB - American College of Sports Medicine CY - Philadelphia, Pa. ER - TY - JOUR A1 - Ketelhut, Maike A1 - Brügge, G. M. A1 - Göll, Fabian A1 - Braunstein, Bjoern A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Adaptive iterative learning control of an industrial robot during neuromuscular training JF - IFAC PapersOnLine N2 - To prevent the reduction of muscle mass and loss of strength coming along with the human aging process, regular training with e.g. a leg press is suitable. However, the risk of training-induced injuries requires the continuous monitoring and controlling of the forces applied to the musculoskeletal system as well as the velocity along the motion trajectory and the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm to minimize the knee joint loadings during the leg extension training with an industrial robot is proposed. The response of the algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee and compared to the results of a higher-order iterative learning control algorithm, a robust iterative learning control and a recently proposed conventional norm-optimal iterative learning control algorithm. Although significant improvements in performance are made compared to the conventional norm-optimal iterative learning control algorithm with a small learning factor, for the developed approach as well as the robust iterative learning control algorithm small steady state errors occur. KW - Iterative learning control KW - Robotic rehabilitation KW - Adaptive control Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.ifacol.2020.12.741 SN - 2405-8963 VL - 53 IS - 2 SP - 16468 EP - 16475 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ketelhut, Maike A1 - Kolditz, Melanie A1 - Göll, Fabian A1 - Braunstein, Bjoern A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Admittance control of an industrial robot during resistance training JF - IFAC-PapersOnLine N2 - Neuromuscular strength training of the leg extensor muscles plays an important role in the rehabilitation and prevention of age and wealth related diseases. In this paper, we focus on the design and implementation of a Cartesian admittance control scheme for isotonic training, i.e. leg extension and flexion against a predefined weight. For preliminary testing and validation of the designed algorithm an experimental research and development platform consisting of an industrial robot and a force plate mounted at its end-effector has been used. Linear, diagonal and arbitrary two-dimensional motion trajectories with different weights for the leg extension and flexion part are applied. The proposed algorithm is easily adaptable to trajectories consisting of arbitrary six-dimensional poses and allows the implementation of individualized trajectories. KW - Assistive technology KW - Rehabilitation engineering KW - Human-Computer interaction KW - Automatic control Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.ifacol.2019.12.102 SN - 2405-8963 N1 - 14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Systems HMS 2019 Tallinn, Estonia, 16–91 September 2019 VL - 52 IS - 19 SP - 223 EP - 228 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heieis, Jule A1 - Böcker, Jonas A1 - D'Angelo, Olfa A1 - Mittag, Uwe A1 - Albracht, Kirsten A1 - Schönau, Eckhard A1 - Meyer, Andreas A1 - Voigtmann, Thomas A1 - Rittweger, Jörn T1 - Curvature of gastrocnemius muscle fascicles as function of muscle–tendon complex length and contraction in humans JF - Physiological Reports N2 - It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle–tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle–tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle–tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5%, 25%, 50%, and 75% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle–tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m−1 from 0% to 100%; p = 0.006). Muscle–tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m−1 per 10°; p < 0.001), inverse mean fascicle length (20 m−1 per cm−1; p = 0.003), and mean fascicle strain (−0.07 m−1 per +10%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure. KW - biomechanics KW - connective tissue KW - physiology KW - ultrasound Y1 - 2023 U6 - http://dx.doi.org/10.14814/phy2.15739 SN - 2051-817X VL - 11 IS - 11 SP - e15739, Seite 1-11 PB - Wiley ER - TY - JOUR A1 - Kuchler, Timon A1 - Günthner, Roman A1 - Ribeiro, Andrea A1 - Hausinger, Renate A1 - Streese, Lukas A1 - Wöhnl, Anna A1 - Kesseler, Veronika A1 - Negele, Johanna A1 - Assali, Tarek A1 - Carbajo-Lozoya, Javier A1 - Lech, Maciej A1 - Adorjan, Kristina A1 - Stubbe, Hans Christian A1 - Hanssen, Henner A1 - Kotliar, Konstantin A1 - Haller, Berhard A1 - Heemann, Uwe A1 - Schmaderer, Christoph T1 - Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation N2 - Background Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians. Methods In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n = 41, matched out of n = 204). Measurements and main results PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vFID; 3.42% ± 1.77% vs. 4.64% ± 2.59%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5–190.2] vs. 189.1 [179.4–197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8–0.9] vs. 0.88 [0.8–0.9], p = 0.007). When combining AVR and vFID, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R = − 0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters. Conclusion Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management. KW - Endothelial dysfunction KW - Long COVID KW - Post-COVID-19 syndrome KW - retinal microvasculature Y1 - 2023 U6 - http://dx.doi.org/10.1007/s10456-023-09885-6 N1 - Corresponding author: Christoph Schmaderer VL - 26 SP - 547 EP - 563 PB - Springer Nature CY - Dordrecht ER - TY - JOUR A1 - Waldvogel, Janice A1 - Freyler, Kathrin A1 - Helm, Michael A1 - Monti, Elena A1 - Stäudle, Benjamin A1 - Gollhofer, Albert A1 - Narici, Marco V. A1 - Ritzmann, Ramona A1 - Albracht, Kirsten T1 - Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks JF - Journal of Applied Physiology N2 - This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy. KW - electromyography KW - locomotion KW - overload KW - stretch-shortening cycle KW - ultrasound Y1 - 2023 U6 - http://dx.doi.org/10.1152/japplphysiol.00279.2022 SN - 1522-1601 (Onlineausgabe) SN - 8750-7587 (Druckausgabe) VL - 134 IS - 1 SP - 190 EP - 202 PB - American Physiological Society CY - Bethesda, Md. ER - TY - JOUR A1 - Digel, Ilya A1 - Akimbekov, Nuraly A1 - Rogachev, Evgeniy A1 - Pogorelova, Natalia T1 - Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural properties JF - Cellulose N2 - In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) synthesized by Medusomyces gisevii have been studied. The culture medium was composed of different initial concentrations of glucose or sucrose dissolved in 0.4% extract of plain green tea. Parameters of the culture media (titratable acidity, substrate conversion degree etc.) were monitored daily for 20 days of cultivation. The BC pellicles produced on different carbon sources were characterized in terms of biomass yield, crystallinity and morphology by field emission scanning electron microscopy (FE-SEM), atomic force microscopy and X-ray diffraction. Our results showed that Medusomyces gisevii had higher BC yields in media with sugar concentrations close to 10 g L−1 after a 18–20 days incubation period. Glucose in general lead to a higher BC yield (173 g L−1) compared to sucrose (163.5 g L−1). The BC crystallinity degree and surface roughness were higher in the samples synthetized from sucrose. Obtained FE-SEM micrographs show that the BC pellicles synthesized in the sucrose media contained densely packed tangles of cellulose fibrils whereas the BC produced in the glucose media displayed rather linear geometry of the BC fibrils without noticeable aggregates. KW - Bacterial cellulose KW - Medusomyces gisevi KW - Carbon sources KW - Culture media KW - Cellulose nanostructure Y1 - 2023 U6 - http://dx.doi.org/10.1007/s10570-023-05592-z SN - 1572-882X (Online) SN - 0969-0239 (Print) N1 - Corresponding author: Ilya Digel PB - Springer Science + Business Media CY - Dordrecht ER - TY - JOUR A1 - Alnemer, Momin Sami Mohammad A1 - Kotliar, Konstantin A1 - Neuhaus, Valentin A1 - Pape, Hans-Christoph A1 - Ciritsis, Bernhard D. T1 - Cost-effectiveness analysis of surgical proximal femur fracture prevention in elderly: a Markov cohort simulation model JF - Cost Effectiveness and Resource Allocation N2 - Background Hip fractures are a common and costly health problem, resulting in significant morbidity and mortality, as well as high costs for healthcare systems, especially for the elderly. Implementing surgical preventive strategies has the potential to improve the quality of life and reduce the burden on healthcare resources, particularly in the long term. However, there are currently limited guidelines for standardizing hip fracture prophylaxis practices. Methods This study used a cost-effectiveness analysis with a finite-state Markov model and cohort simulation to evaluate the primary and secondary surgical prevention of hip fractures in the elderly. Patients aged 60 to 90 years were simulated in two different models (A and B) to assess prevention at different levels. Model A assumed prophylaxis was performed during the fracture operation on the contralateral side, while Model B included individuals with high fracture risk factors. Costs were obtained from the Centers for Medicare & Medicaid Services, and transition probabilities and health state utilities were derived from available literature. The baseline assumption was a 10% reduction in fracture risk after prophylaxis. A sensitivity analysis was also conducted to assess the reliability and variability of the results. Results With a 10% fracture risk reduction, model A costs between $8,850 and $46,940 per quality-adjusted life-year ($/QALY). Additionally, it proved most cost-effective in the age range between 61 and 81 years. The sensitivity analysis established that a reduction of ≥ 2.8% is needed for prophylaxis to be definitely cost-effective. The cost-effectiveness at the secondary prevention level was most sensitive to the cost of the contralateral side’s prophylaxis, the patient’s age, and fracture treatment cost. For high-risk patients with no fracture history, the cost-effectiveness of a preventive strategy depends on their risk profile. In the baseline analysis, the incremental cost-effectiveness ratio at the primary prevention level varied between $11,000/QALY and $74,000/QALY, which is below the defined willingness to pay threshold. Conclusion Due to the high cost of hip fracture treatment and its increased morbidity, surgical prophylaxis strategies have demonstrated that they can significantly relieve the healthcare system. Various key assumptions facilitated the modeling, allowing for adequate room for uncertainty. Further research is needed to evaluate health-state-associated risks. KW - Hip fractures KW - Prevention KW - Geriatric KW - Cost-effectiveness KW - Prophylaxis Y1 - 2023 U6 - http://dx.doi.org/10.1186/s12962-023-00482-4 SN - 1478-7547 N1 - Corresponding author: Momin S. Alnemer IS - 21, Article number: 77 PB - Springer Nature ER - TY - JOUR A1 - Uysal, Karya A1 - Firat, Ipek Serat A1 - Creutz, Till A1 - Aydin, Inci Cansu A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes JF - membranes N2 - Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here. Y1 - 2022 U6 - http://dx.doi.org/10.3390/membranes13010022 N1 - This article belongs to the Special Issue "Latest Scientific Discoveries in Polymer Membranes" VL - 2023 IS - 13(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Thiebes, Anja Lena A1 - Klein, Sarah A1 - Zingsheim, Jonas A1 - Möller, Georg H. A1 - Gürzing, Stefanie A1 - Reddemann, Manuel A. A1 - Behbahani, Mehdi A1 - Cornelissen, Christian G. T1 - Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio JF - pharmaceutics N2 - Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4–33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing. KW - tri-lineage differentiation KW - survival KW - twin-fluid atomizer KW - adipose-derived stromal cells (ASCs) KW - cell atomization KW - cell aerosolization Y1 - 2022 U6 - http://dx.doi.org/10.3390/pharmaceutics14112421 N1 - This article belongs to the Special Issue "Stromal, Stem, Signaling Cells: The Multiple Roles and Applications of Mesenchymal Cells" VL - 14 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, N. Sh. A1 - Zhubanova, A. A. A1 - Mansurov, Z. A. A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Use of Carbonized Rise Shell for the local treatment of wounds JF - Eurasian ChemTech Journal N2 - On the model of musculocutaneous wound in rats, the effect of applicative sorption by carbonized rise shell (CRS) on the healing of festering wound was studied. It has been shown, that cytological changes end with rapid scar formation. The use of CRS at the period of severe purulent wound contributes to its favorable course, prevents the development of complications of the animals from sepsis. Y1 - 2010 U6 - http://dx.doi.org/10.18321/ectj35 SN - 2522-4867 VL - 12 IS - 2 SP - 133 EP - 138 PB - Institute of Combustion Problems CY - Almaty ER - TY - JOUR A1 - Aggeloussis, Nickos A1 - Giannakou, Erasmia A1 - Albracht, Kirsten A1 - Arampatzis, Adamantios T1 - Reproducibility of fascicle length and pennation angle of gastrocnemius medialis in human gait in vivo JF - Gait and Posture N2 - The purpose of the current study was to examine the reproducibility of fascicle length and pennation angle of gastrocnemius medialis while human walking. To the best of our knowledge, this is the first study of the reproducibility of fascicle length and pennation angle of gastrocnemius medialis in vivo during human gait. Twelve males performed 10 gait trials on a treadmill, in 2 separate days. B-mode ultrasonography, with the ultrasound probe firmly adjusted in the transverse and frontal planes using a special cast, was used to measure the fascicle length and the pennation angle of the gastrocnemius medialis (GM). A Vicon 624 system with three cameras operating at 120 Hz was also used to record the ankle and knee joint angles. The results showed that measurements of fascicle length and pennation angle showed high reproducibility during the gait cycle, both within the same day and between different days. Moreover, the root mean square differences between the repeated waveforms of both variables were very small, compared with their ranges (fascicle length: RMS = ∼3 mm, range: 38–63 mm; pennation angle: RMS = ∼1.5°, range: 22–32°). However, their reproducibility was lower compared to the joint angles. It was found that representative data have to be derived by a wide number of gait trials (fascicle length ∼six trials, pennation angle more than 10 trials), to assure the reliability of the fascicle length and pennation angle in human gait. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.gaitpost.2009.08.249 SN - 0966-6362 VL - 31 IS - 1 SP - 73 EP - 77 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arampatzis, Adamantios A1 - Peper, Andreas A1 - Bierbaum, Stefanie A1 - Albracht, Kirsten T1 - Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain JF - Journal of Biomechanics N2 - The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9±2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97±0.47%), and the other leg at high tendon strain magnitude (4.72±1.08%) of similar frequency (0.5 Hz, 1 s loading, 1 s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3 s loading, 3 s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon–aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon–aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P>0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.jbiomech.2010.08.014 SN - 0021-9290 VL - 43 IS - 16 SP - 3073 EP - 3079 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heinzel, Alexander A1 - Schäfer, Ralf A1 - Müller, Hans-Wilhelm A1 - Schieffer, Andre A1 - Ingenhag, Ariane A1 - Eickhoff, Simon B. A1 - Northoff, Georg A1 - Franz, Matthias A1 - Hautzel, Hubertus T1 - Increased Activation of the Supragenual Anterior Cingulate Cortex during Visual Emotional Processing in Male Subjects with High Degrees of Alexithymia: An Event-Related fMRI Study JF - Psychotherapy and Psychosomatics N2 - Background: One of the most prominent neurobiological models of alexithymia assumes an altered function of the anterior cingulate cortex (ACC) as the crucial neural correlate of alexithymia. So far functional imaging studies have yielded inconclusive results. Therefore, we tested this hypothesis in healthy alexithymics and nonalexithymics in an event-related fMRI study. Methods: Thirty high- and 30 low-alexithymic right-handed male subjects (selected by the 20-item Toronto Alexithymia Scale, TAS-20) were investigated with event-related fMRI using a picture viewing paradigm. The stimuli consisted of happy, fearful and neutral facial expressions (Ekman-Friesen) as well as positive, negative and neutral pictures from the International Affective Picture System. Results: Contrasting the high-alexithymic with the low-alexithymic group we observed increased activation of the supragenual ACC for different emotional valences as well as for different emotional stimuli. Moreover, there was a positive correlation of the ACC with the individual TAS-20 scores but no correlations with the individual Beck Depression Inventory scores. Additionally, there was no difference in activity of the amygdala. Conclusions: We demonstrated that the supragenual ACC is constantly activated more strongly in alexithymic subjects and that this activation is related to the symptoms of alexithymia and not to associated symptoms such as depression. Therefore, our findings support the hypothesis of an altered function of the ACC in alexithymia. Y1 - 2010 U6 - http://dx.doi.org/10.1159/000320121 SN - 0033-3190 VL - 79 IS - 6 SP - 363 EP - 370 PB - Karger CY - Basel ER - TY - JOUR A1 - Turaliyeva, M. A1 - Yeshibaev, A. A1 - Saparbekova, A. A1 - Akynova, L. A1 - Abildayeva, R. A1 - Sadenova, M. A1 - Sartayeva, K. A1 - Schieffer, Andre A1 - Digel, Ilya T1 - Species composition and injuriousness of stranger xylophilous fauna affecting indigenous urban dendroflora of Central Asia JF - Asian journal of microbiology, biotechnology & environmental sciences : AJMBES N2 - At the present time, one of the most serious environmental problems of Central Asia and South Kazakhstan is the ongoing large-scale deterioration of principal urban tree populations. Several major centers of massive spread of invasive plant pests have been found in urban dendroflora of this region. The degree of damage of seven most wide-spread aboriginal tree species was found to range from 21.4±1.1 to 85.4±1.8%. In particular, the integrity of the native communities of sycamore (Platanus spp.), willow (Salix spp.), poplar (Populus spp.) and elm (Ulmus spp.) is highly endangered. Our taxonomic analysis of the most dangerous tree pests of the region has revealed them as neobiontic xylophilous insects such as Cossus cossus L. (Order: Lepidoptera L.) Monochamus urussovi Fisch., Monochamus sutor L., Acanthocinus aedelis L. and Ñetonia aureate L. (Order: Coleoptera L.). We relate the origin of this threatening trend with the import of industrial wood in the mid 90’s of the last century that was associated with high degree of the constructional work in the region. Because of the absence of efficient natural predators of the pest species, the application of microbiological methods of the pest control and limitation is suggested. Y1 - 2016 SN - 0972-3005 VL - 18 IS - 2 SP - 359 EP - 366 PB - EM International ER - TY - JOUR A1 - Heinzel, Alexander A1 - Schäfer, Ralf A1 - Müller, Hans-Wilhelm A1 - Schieffer, Andre A1 - Ingenhag, Ariane A1 - Northoff, Georg A1 - Franz, Matthias A1 - Hautzel, Hubertus T1 - Differential modulation of valence and arousal in high-alexithymic and low-alexithymic individuals JF - Neuroreport N2 - High-alexithymic individuals are characterized by an impaired ability to identify and communicate emotions whereas low-alexithymic individuals have a wide-ranging ability to deal with emotions. This study examined the hypothesis that valence and arousal modifications of emotional stimuli differentially modulate cortical regions in high-alexithymic and low-alexithymic individuals. To this end, 28 high-alexithymic and 25 low-alexithymic individuals were investigated with event-related fMRI using visual emotional stimuli. We found differential neural activations in the dorsal anterior cingulate, the insula and the amygdala. We suggest that these differences may account for the impaired ability of high-alexithymic individuals to appropriately handle emotional stimuli. Y1 - 2010 U6 - http://dx.doi.org/10.1097/WNR.0b013e32833f38e0 SN - 1473-558X VL - 21 IS - 15 SP - 998 EP - 1002 PB - Lippincott Williams & Wilkins CY - London ER - TY - JOUR A1 - Kozhalakova, A. A. A1 - Zhubanova, Azhar A. A1 - Mansurov, Z. A. A1 - Digel, Ilya A1 - Tazhibayeva, S. M. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Adsorption of bacterial lipopolysaccharides on carbonized rice shell JF - Science of Central Asia (2010) Y1 - 2010 SP - 50 EP - 54 ER - TY - JOUR A1 - Digel, Ilya T1 - In-situ biological decontamination of an ice melting probe Y1 - 2010 N1 - 38th COSPAR Scientific Assembly. Held 18-15 July 2010, in Bremen, Germany Abstract unter https://www.cospar-assembly.org/abstractcd/OLD/COSPAR-10/abstracts/data/pdf/abstracts/F36-0013-10.pdf ER - TY - JOUR A1 - Kurz, R. A1 - Linder, Peter A1 - Trzewik, Jürgen A1 - Rüffer, M. A1 - Artmann, Gerhard A1 - Digel, Ilya A1 - Rothermel, A. A1 - Robitzki, A. A1 - Temiz Artmann, Aysegül T1 - Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes JF - Medical and Biological Engineering and Computing N2 - The CellDrum technology (The term 'CellDrum technology' includes a couple of slightly different technological setups for measuring lateral mechanical tension in various types of cell monolayers or 3D-tissue constructs) was designed to quantify the contraction rate and mechanical tension of self-exciting cardiac myocytes. Cells were grown either within flexible, circular collagen gels or as monolayer on top of respective 1-mum thin silicone membranes. Membrane and cells were bulged outwards by air pressure. This biaxial strain distribution is rather similar the beating, blood-filled heart. The setup allowed presetting the mechanical residual stress level externally by adjusting the centre deflection, thus, mimicking hypertension in vitro. Tension was measured as oscillating differential pressure change between chamber and environment. A 0.5-mm thick collagen-cardiac myocyte tissue construct induced after 2 days of culturing (initial cell density 2 x 10(4) cells/ml), a mechanical tension of 1.62 +/- 0.17 microN/mm(2). Mechanical load is an important growth regulator in the developing heart, and the orientation and alignment of cardiomyocytes is stress sensitive. Therefore, it was necessary to develop the CellDrum technology with its biaxial stress-strain distribution and defined mechanical boundary conditions. Cells were exposed to strain in two directions, radially and circumferentially, which is similar to biaxial loading in real heart tissues. Thus, from a biomechanical point of view, the system is preferable to previous setups based on uniaxial stretching. Y1 - 2010 U6 - http://dx.doi.org/10.1007/s11517-009-0552-y SN - 1741-0444 VL - 48 IS - 1 SP - 59 EP - 65 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Albanna, Walid A1 - Kotliar, Konstantin A1 - Lüke, Jan Niklas A1 - Alpdogan, Serdar A1 - Conzen, Catharina A1 - Lindauer, Ute A1 - Clusmann, Hans A1 - Hescheler, Jürgen A1 - Vilser, Walthard A1 - Schneider, Toni A1 - Schubert, Gerrit Alexander T1 - Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis JF - Plos one N2 - Background Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. Methods A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. Results A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). Conclusions To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals. Y1 - 2018 U6 - http://dx.doi.org/10.1371/journal.pone.0204689 VL - 13 IS - 10 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Herssens, Nolan A1 - Cowburn, James A1 - Albracht, Kirsten A1 - Braunstein, Bjoern A1 - Cazzola, Dario A1 - Colyer, Steffi A1 - Minetti, Alberto E. A1 - Pavei, Gaspare A1 - Rittweger, Jörn A1 - Weber, Tobias A1 - Green, David A. ED - Cattaneo, Luigi T1 - Movement in low gravity environments (MoLo) programme – the MoLo-L.O.O.P. study protocol JF - PLOS ONE / Public Library of Science N2 - Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity. Y1 - 2022 U6 - http://dx.doi.org/10.1371/journal.pone.0278051 SN - 1932-6203 VL - 17 IS - 11 PB - Plos CY - San Francisco ER - TY - JOUR A1 - Albanna, W. A1 - Conzen, C. A1 - Weiss, M. A1 - Clusmann, H. A1 - Fuest, M. A1 - Mueller, M. A1 - Brockmann, M.A. A1 - Vilser, W. A1 - Schmidt-Trucksäss, A. A1 - Hoellig, A. A1 - Seiz, M. A1 - Thomé, C. A1 - Kotliar, Konstantin A1 - Schubert, G.A. T1 - Retinal Vessel Analysis (RVA) in the context of subarachnoid hemorrhage: A proof of concept study JF - PLoS ONE N2 - Background Timely detection of impending delayed cerebral ischemia after subarachnoid hemorrhage (SAH) is essential to improve outcome, but poses a diagnostic challenge. Retinal vessels as an embryological part of the intracranial vasculature are easily accessible for analysis and may hold the key to a new and non-invasive monitoring technique. This investigation aims to determine the feasibility of standardized retinal vessel analysis (RVA) in the context of SAH. Methods In a prospective pilot study, we performed RVA in six patients awake and cooperative with SAH in the acute phase (day 2–14) and eight patients at the time of follow-up (mean 4.6±1.7months after SAH), and included 33 age-matched healthy controls. Data was acquired using a manoeuvrable Dynamic Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and neurovascular coupling. Results Image quality was satisfactory in the majority of cases (93.3%). In the acute phase after SAH, retinal arteries were significantly dilated when compared to the control group (124.2±4.3MU vs 110.9±11.4MU, p<0.01), a difference that persisted to a lesser extent in the later stage of the disease (122.7±17.2MU, p<0.05). Testing for neurovascular coupling showed a trend towards impaired primary vasodilation and secondary vasoconstriction (p = 0.08, p = 0.09 resp.) initially and partial recovery at the time of follow-up, indicating a relative improvement in a time-dependent fashion. Conclusion RVA is technically feasible in patients with SAH and can detect fluctuations in vessel diameter and autoregulation even in less severely affected patients. Preliminary data suggests potential for RVA as a new and non-invasive tool for advanced SAH monitoring, but clinical relevance and prognostic value will have to be determined in a larger cohort. Y1 - 2016 U6 - http://dx.doi.org/10.1371/journal.pone.0158781 SN - 1932-6203 VL - 11 IS - 7 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Abel, Dirk A1 - Fasse, Alessandro A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Evaluation of foot position and orientation as manipulated variables to control external knee adduction moments in leg extension training JF - Computer methods and programs in biomedicine N2 - Background and Objective Effective leg extension training at a leg press requires high forces, which need to be controlled to avoid training-induced damage. In order to avoid high external knee adduction moments, which are one reason for unphysiological loadings on knee joint structures, both training movements and the whole reaction force vector need to be observed. In this study, the applicability of lateral and medial changes in foot orientation and position as possible manipulated variables to control external knee adduction moments is investigated. As secondary parameters both the medio-lateral position of the center of pressure and the frontal-plane orientation of the reaction force vector are analyzed. Methods Knee adduction moments are estimated using a dynamic model of the musculoskeletal system together with the measured reaction force vector and the motion of the subject by solving the inverse kinematic and dynamic problem. Six different foot conditions with varying positions and orientations of the foot in a static leg press are evaluated and compared to a neutral foot position. Results Both lateral and medial wedges under the foot and medial and lateral shifts of the foot can influence external knee adduction moments in the presented study with six healthy subjects. Different effects are observed with the varying conditions: the pose of the leg is changed and the direction and center of pressure of the reaction force vector is influenced. Each effect results in a different direction or center of pressure of the reaction force vector. Conclusions The results allow the conclusion that foot position and orientation can be used as manipulated variables in a control loop to actively control knee adduction moments in leg extension training. KW - External knee adduction moments KW - Manipulated variables KW - Inverse dynamic problem KW - Inverse kinematic problem KW - Musculoskeletal model Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.cmpb.2016.09.005 SN - 0169-2607 N1 - Part of special issue: "SI: Personalised Models and System Identification" VL - 171 SP - 81 EP - 86 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Garhofer, Gerhard A1 - Bek, Toke A1 - Boehm, Andreas G. A1 - Gherghel, Doina A1 - Grundwald, Juan A1 - Jeppesen, Peter A1 - Kergoat, Hélène A1 - Kotliar, Konstantin A1 - Lanzl, Ines A1 - Lovasik, John V. A1 - Nagel, Edgar A1 - Vilser, Walthard A1 - Orgul, Selim A1 - Schmetterer, Leopold T1 - Use of the retinal vessel analyzer in ocular blood flow research JF - Acta Ophthalmol N2 - The present article describes a standard instrument for the continuous online determination of retinal vessel diameters, the commercially available retinal vessel analyzer. This report is intended to provide informed guidelines for measuring ocular blood flow with this system. The report describes the principles underlying the method and the instruments currently available, and discusses clinical protocol and the specific parameters measured by the system. Unresolved questions and the possible limitations of the technique are also discussed. Y1 - 2010 U6 - http://dx.doi.org/10.1111/j.1755-3768.2009.01587.x SN - 1755-3768 VL - 88 IS - 7 SP - 717 EP - 722 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Pressler, Axel A1 - Esefeld, Katrin A1 - Scherr, Johannes A1 - Ali, Mohammad A1 - Hanssen, Henner A1 - Kotliar, Konstantin A1 - Lanzl, Ines A1 - Halle, Martin A1 - Kaemmerer, Harald A1 - Schmidt-Trucksäss, Arno A1 - Hager, Alfred T1 - Structural alterations of retinal arterioles in adults late after repair of aortic isthmic coarctation JF - The American Journal of Cardiology N2 - Patients after coarctation repair still have an increased risk of cardiovascular or cerebrovascular events. This has been explained by the persisting hypertension and alterations in the peripheral vessels. However, involvement of the central vessels such as the retinal arteries is virtually unknown. A total of 34 patients after coarctation repair (22 men and 12 women; 23 to 58 years old, age range 0 to 32 years at surgical repair) and 34 nonhypertensive controls underwent structural and functional retinal vessel analysis. Using structural analysis, the vessel diameters were measured. Using functional analysis, the endothelium-dependent vessel dilation in response to flicker light stimulation was assessed. In the patients after coarctation repair, the retinal arteriolar diameter was significantly reduced compared to that of the controls (median 182 μm, first to third quartile 171 to 197; vs 197 μm, first to third quartile 193 to 206; p <0.001). These findings were independent of the peripheral blood pressure and age at intervention. No differences were found for venules. The functional analysis findings were not different between the patients and controls (maximum dilation 3.5%, first to third quartile 2.1% to 4.5% vs 3.6%, first to third quartile 2.2% to 4.3%; p = 0.81), indicating preserved autoregulative mechanisms. In conclusion, the retinal artery diameter is reduced in patients after coarctation repair, independent of their current blood pressure level and age at intervention. As a structural marker of chronic vessel damage associated with past, current, or future hypertension, retinal arteriolar narrowing has been linked to stroke incidence. These results indicate an involvement of cerebral microcirculation in aortic coarctation, despite timely repair, and might contribute to explain the increased rate of cerebrovascular events in such patients. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.amjcard.2009.10.070 SN - 0002-9149 VL - 105 IS - 5 SP - 740 EP - 744 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wiescher, A. A1 - Kotliar, Konstantin A1 - Neuhann, T. A1 - Lanzl, Ines M. T1 - Rasch progrediente Visusminderung beider Augen bei einem jungen Patienten JF - Der Ophthalmologe N2 - Ein 34-jähriger männlicher Patient stellte sich zur Abklärung einer seit dem 9. Lebensjahr bestehenden und im letzten Jahr rasch progredienten Visusminderung beider Augen bei uns vor. Er beschrieb eine subjektiv zunehmende, im Spiegel für ihn selbst sichtbare, weißliche Trübung in der Pupille beidseits und eine starke Blendempfindlichkeit. Nebenbefundlich gab er rezidivierende Konjunktivitiden und morgens verklebte Lider an. Eine Allergie auf Gräserpollen und eine Unverträglichkeit auf Alkohol sowie mehrere Lebensmittel seien ebenfalls bekannt. Zusätzlich leidet der Patient an stark ausgeprägtem atopischem Ekzem. Dieses wurde nie systemisch, sondern nur bei Bedarf mit kortisonhaltiger Salbe therapiert. Y1 - 2010 U6 - http://dx.doi.org/10.1007/s00347-007-1586-x SN - 1433-0423 VL - 105 IS - 4 SP - 389 EP - 392 PB - Springer CY - Berlin ER - TY - JOUR A1 - Lanzl, Ines M. A1 - Seidova, Seid-Fatima A1 - Erben, A. A1 - Thürmel, K. A1 - Kotliar, Konstantin T1 - Diffuse stromale Hornhauttrübungen und Veränderungen der Hände JF - Der Ophthalmologe N2 - Bilaterale stromale Hornhauttrübungen sind für den Augenarzt eine differenzialdiagnostische Herausforderung. Im folgenden Beitrag werden 2 Patieninnen (30 und 36 Jahre) mit unterschiedlich stark ausgeprägter stromaler diffuser Hornhauttrübung vorgestellt. Patientin 1 war kleinwüchsig (114 cm) und Patientin 2 normal groß (172 cm). Beide Patientinnen wiesen veränderte Gelenkstrukturen an Hand und Fußgelenken sowie diffuse stromale Hornhauttrübungen auf. Des Weiteren lagen eine Mitral- und Aorteninsuffizienz (Patientin 1) bzw. eine Aorteninsuffizienz (Patientin 2) vor. Die stromalen diffusen Hornhauttrübungen ließen im Zusammenhang mit den Gelenkveränderungen ein Scheie-Syndrom vermuten. Therapeutisch ist bei Patienten mit Visusminderung eine (lamelläre) Keratoplastik sinnvoll. Y1 - 2010 U6 - http://dx.doi.org/10.1007/s00347-009-2066-2 SN - 1433-0423 VL - 107 IS - 4 SP - 363 EP - 365 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Nagel, Edgar A1 - Vilser, Walthard A1 - Seidova, Seid-Fatima A1 - Lanzl, Ines T1 - Microstructural alterations of retinal arterial blood column along the vessel axis in systemic hypertension JF - Investigative Ophthalmology & Visual Science, IOVS N2 - Purpose: Image analysis by the retinal vessel analyzer (RVA) observes retinal vessels in their dynamic state online noninvasively along a chosen vessel segment. It has been found that high-frequency diameter changes in the retinal artery blood column along the vessel increase significantly in anamnestically healthy volunteers with increasing age and in patients with glaucoma during vascular dilation. This study was undertaken to investigate whether longitudinal sections of the retinal artery blood column are altered in systemic hypertension. Methods: Retinal arteries of 15 untreated patients with essential arterial hypertension (age, 50.9 ± 11.9 years) and of 15 age-matched anamnestically healthy volunteers were examined by RVA. After baseline assessment, a monochromatic luminance flicker (530–600 nm; 12.5 Hz; 20 s) was applied to evoke retinal vasodilation. Differences in amplitude and frequency of spatial artery blood column diameter change along segments (longitudinal arterial profiles) of 1 mm in length were measured and analyzed using Fourier transformation. Results: In the control group, average reduced power spectra (ARPS) of longitudinal arterial profiles did not differ when arteries changed from constriction to dilation. In the systemic hypertension group, ARPS during constriction, baseline, and restoration were identical and differed from ARPS during dilation (P < 0.05). Longitudinal arterial profiles in both groups showed significant dissimilitude at baseline and restoration (P < 0.05). Conclusions: The retinal artery blood column demonstrates microstructural alterations in systemic hypertension and is less irregular along the vessel axis during vessel dilation. These microstructural changes may be an indication of alterations in vessel wall rigidity, vascular endothelial function, and smooth muscle cells in this disease, leading to impaired perfusion and regulation. Y1 - 2010 U6 - http://dx.doi.org/10.1167/iovs.09-3649 SN - 0146-0404 VL - 51 IS - 4 SP - 2165 EP - 2172 PB - ARVO CY - Rockville, Md. ER -