TY - CHAP A1 - Tullis, Blake P. A1 - Crookston, Brian M. A1 - Bung, Daniel Bernhard T1 - Weir head-discharge relationships: A multi-lab exercise T2 - Proceedings of the 38th IAHR World Congress (Panama, 2019) N2 - Though weir flow has been studied for centuries, there still remains some nuances of weir flow that are not well understood. Therefore, an international study was conducted in which 20 different hydraulics laboratories from around the world built and tested two linear weirs (quarter-round and half-round crested weirs) of common geometry. The only unconstrained dimension was the weir length, which could be adjusted to match the width of the test flume. Participating laboratories used the instrumentation and data collection methodologies of their choosing for head and discharge measurements. The experimental results found significant variability in the discharge coefficients as a function of dimensionless upstream head, as well as in the head-discharge relationships (as much as 50% in some cases). Potential sources contributing to the scatter may have included head meter instrumentation, flow meter instrumentation, approach flow length (flume length upstream of weir), head measurement location, nappe behavior, laboratory measurement methods and experimental setup, and the care and skill of the investigator (human error). Analyzing the data as a function of instrumentation types, approach length, and head measurement location did not provide any insight regarding the variations. Nappe behavior (e.g., aeration), which could be influenced by laboratory-specific conditions, varied among the datasets primarily for the half-round crested weir (about 20%). Y1 - 2019 U6 - https://doi.org/10.3850/38WC092019-0806 SN - 2521-716X (Online) N1 - 38TH IAHR World Congress – IAHR 2019 Panamá, República de Panamá, 1 – 6 September, 2019 PB - IAHR CY - Madrid ER - TY - CHAP A1 - Crookston, Brian M. A1 - Bung, Daniel Bernhard ED - Ortega-Sánchez, Miguel T1 - Application of RGB-D cameras in hydraulic laboratory studies T2 - Proceedings of the 39th IAHR World Congress N2 - Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors’ experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022964 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 5127 EP - 5133 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - CHAP A1 - Duran Paredes, Ludwin A1 - Mottaghy, Darius A1 - Herrmann, Ulf A1 - Groß, Rolf Fritz T1 - Online ground temperature and soil moisture monitoring of a shallow geothermal system with non-conventional components T2 - EGU General Assembly 2020 N2 - We present first results from a newly developed monitoring station for a closed loop geothermal heat pump test installation at our campus, consisting of helix coils and plate heat exchangers, as well as an ice-store system. There are more than 40 temperature sensors and several soil moisture content sensors distributed around the system, allowing a detailed monitoring under different operating conditions.In the view of the modern development of renewable energies along with the newly concepts known as Internet of Things and Industry 4.0 (high-tech strategy from the German government), we created a user-friendly web application, which will connect the things (sensors) with the open network (www). Besides other advantages, this allows a continuous remote monitoring of the data from the numerous sensors at an arbitrary sampling rate.Based on the recorded data, we will also present first results from numerical simulations, taking into account all relevant heat transport processes.The aim is to improve the understanding of these processes and their influence on the thermal behavior of shallow geothermal systems in the unsaturated zone. This will in turn facilitate the prediction of the performance of these systems and therefore yield an improvement in their dimensioning when designing a specific shallow geothermal installation. Y1 - 2020 N1 - EGU General Assembly 2020, Online, 4–8 May 2020 ER - TY - CHAP A1 - Langohr, Philipp A1 - Bung, Daniel Bernhard A1 - Crookston, Brian M. ED - Ortega-Sánchez, Miguel T1 - Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation T2 - Proceedings of the 39th IAHR World Congress N2 - The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022738 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 2313 EP - 2318 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - RPRT A1 - Feldmann, Marco A1 - Kuhnhenne, M. A1 - Döring, Bernd A1 - Pyschny, D. A1 - Lawson, R.M. A1 - Chuter, R.D. A1 - Boudjabeur, S. A1 - Lecomte-Labory, F. A1 - Airaksinen, M. A1 - Heikkinen, J. A1 - Laamanen, J. A1 - Albart, P. A1 - D'Haeyer, R. A1 - Chica, J.A. A1 - Maseda, J.M. A1 - Amundarain, A. A1 - Rips, M.O. A1 - Nuñez, J.A. A1 - Macías, O. A1 - Beguin, P. A1 - Ben Larbi, A. T1 - Energy and thermal improvements for construction in steel (ETHICS) - EUR 26010 N2 - ETHICS is concerned with evaluating, measuring and making improvements in the thermal and energy performance of steel-clad and steel-framed buildings. It addresses basic building physics performance at a laboratory and full-scale level, and the preparation of design guidance for commercial, industrial and residential buildings. It includes the development of design tools to assist users in assessing whole-building performance, and calibrates these tools against whole-building measurements, which will be obtained from this research. Opportunities for renewable energy and other energy-saving features will be assessed. This project focuses on objectives that are of particular interest for the design of new steel constructions regarding energy efficiency. ETHICS investigates the as-built performance by on-site tests regarding air tightness and heat transfer properties of the building envelope and by monitoring the energy consumption and thermal comfort of selected up-to-date steel buildings. As energy efficiency is a key requirement for design and construction of buildings in the future, this project provides well-founded scientific data, which prove the high energy performance of current steel constructions and work out details for further improvements to maintain and extend the position of steel products in the construction sector. KW - steel KW - metal structure KW - building technique KW - energy efficiency KW - thermal insulation KW - industrial research KW - research report Y1 - 2013 SN - 978-92-79-30789-8 U6 - https://doi.org/10.2777/17106 SN - 1831-9424 PB - Publications Office of the European Union CY - Luxembourg ER - TY - CHAP A1 - Feldmann, Marco A1 - Döring, Bernd A1 - Pyschny, D. T1 - Floor systems; Sustainabilty analyses and assessments of steel bridges T2 - Sustainable steel buildings : a practical guide for structures and envelopes Y1 - 2016 SN - 978-1-118-74079-8 (PDF) SN - 978-1-118-74111-5 SP - 198 EP - 223 PB - Wiley Blackwell CY - Chichester, West Sussex ER - TY - CHAP A1 - Uibel, Thomas A1 - Blaß, Hans Joachim T1 - Joints with Dowel Type Fasteners in CLT structures T2 - Focus solid timber solutions : European Conference on Cross Laminated Timber (CLT); May 21-22, 2013, Graz University of Technology, Austria Y1 - 2013 SN - 978-1-85790-181-8 ; 1-85790-181-9 SP - 119 EP - 134 ER - TY - JOUR A1 - Valero, Daniel A1 - Felder, Stefan A1 - Kramer, Matthias A1 - Wang, Hang A1 - Carrillo, José M. A1 - Pfister, Michael A1 - Bung, Daniel Bernhard T1 - Air–water flows JF - Journal of Hydraulic Research N2 - High Froude-number open-channel flows can entrain significant volumes of air, a phenomenon that occurs continuously in spillways, in free-falling jets and in hydraulic jumps, or as localized events, notably at the toe of hydraulic jumps or in plunging jets. Within these flows, turbulence generates millions of bubbles and droplets as well as highly distorted wavy air–water interfaces. This phenomenon is crucial from a design perspective, as it influences the behaviour of high-velocity flows, potentially impairing the safety of dam operations. This review examines recent scientific and engineering progress, highlighting foundational studies and emerging developments. Notable advances have been achieved in the past decades through improved sampling of flows and the development of physics-based models. Current challenges are also identified for instrumentation, numerical modelling and (up)scaling that hinder the formulation of fundamental theories, which are instrumental for improving predictive models, able to offer robust support for the design of large hydraulic structures at prototype scale. Y1 - 2024 U6 - https://doi.org/10.1080/00221686.2024.2379482 SN - 0022-1686 (Print) SN - 1814-2079 (Online) VL - 62 IS - 4 SP - 319 EP - 339 PB - Taylor & Francis ER -