TY - JOUR A1 - Näther, Niko A1 - Auger, V. A1 - Poghossian, Arshak A1 - Koudelka-Hep, M. A1 - Schöning, Michael Josef T1 - A miniaturized flow-through cell in SU-8 technique for EIS sensors JF - Biomedizinische Technik. 49 (2004), H. 2 Y1 - 2004 SN - 0932-4666 SP - 994 EP - 995 ER - TY - CHAP A1 - Land, Ingmar A1 - Hoeher, Peter Adam A1 - Gligorevic, Snjezana T1 - Computation of symbol-wise mutual information in transmission systems with logAPP decoders and application to EXIT charts T2 - 5th International ITG Conference on Source and Channel Coding (SCC) : January 14 - 16, 2004, Erlangen ; conference record. (ITG-Fachbericht ; 181) Y1 - 2004 SN - 3-8007-2802-8 SP - 195 EP - 202 PB - VDE-Verl. CY - Berlin [u.a.] ER - TY - CHAP A1 - Lüpfert, E. A1 - Herrmann, Ulf A1 - Price, Henry A1 - Zarza, E. A1 - Kistener, R. ED - Ramos, C. T1 - Towards Standard Performance Analysis for Parabolic Trough Collector Fields T2 - 12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12 Y1 - 2004 SN - 968-6114-18-1 PB - Instituto de Investigaciones Electricas CY - [s.l.] ER - TY - JOUR A1 - Sponagel, Stefan A1 - Baroud, Gamal A1 - Falk, R. A1 - Crookshank, M. T1 - Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration. G. Baroud, R. Falk, M. Crookshank, S. Sponagel, T. Steffen JF - Journal of Biomechanics. 37 (2004), H. 2 Y1 - 2004 SN - 0021-9290 SP - 189 EP - 196 ER - TY - JOUR A1 - Sponagel, Stefan A1 - Baroud, Gamal A1 - Falk, R. A1 - Crookshank, M. T1 - Corrigendum to “Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration”. Baroud, G.; Falk, R.; Crookshank, M.; Sponagel, S.; Steffen, T. JF - Journal of Biomechanics. 37 (2004), H. 2 Y1 - 2004 SN - 0021-9290 SP - 1802 ER - TY - JOUR A1 - Ziemons, Karl A1 - Heinrichs, U. A1 - Streun, M. A1 - Pietrzyk, Uwe T1 - Validation of GEANT3 simulation studies with a dual-head PMT ClearPET™ prototype JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5 N2 - The ClearPET™ project is proposed by working groups of the Crystal Clear Collaboration (CCC) to develop a 2nd generation high performance small animal positron emission tomograph (PET). High sensitivity and high spatial resolution is foreseen for the ClearPET™ camera by using a phoswich arrangement combining mixed lutetium yttrium aluminum perovskite (LuYAP:Ce) and lutetium oxyorthosilicate (LSO) scintillating crystals. Design optimizations for the first photomultiplier tube (PMT) based ClearPET camera are done with a Monte-Carlo simulation package implemented on GEANT3 (CERN, Geneva, Switzerland). A dual-head prototype has been built to test the frontend electronics and was used to validate the implementation of the GEANT3 simulation tool. Multiple simulations were performed following the experimental protocols to measure the intrinsic resolution and the sensitivity profile in axial and radial direction. Including a mean energy resolution of about 27.0% the simulated intrinsic resolution is about (1.41±0.11)mm compared to the measured of (1.48±0.06)mm. The simulated sensitivity profiles show a mean square deviation of 12.6% in axial direction and 3.6% in radial direction. Satisfactorily these results are representative for all designs and confirm the scanner geometry. Y1 - 2004 SN - 1082-3654 SP - 3053 EP - 3056 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Chaziioannou, A. F. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. A1 - Pietrzyk, Uwe T1 - Investigation of different microCT scanner configurations by GEANT4 simulations JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4 N2 - This study has been performed to design the combination of the new ClearPET TM (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal Positron Emission Tomography (PET) system, with a microComputed Tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material. Y1 - 2004 SN - 1082-3654 SP - 2989 EP - 2993 ER -