TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Baltes, Klaus A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide – numerical modeling and experimental results JF - International Journal of Heat and Mass Transfer N2 - Hydrogen peroxide (H2O2) is a typical surface sterilization agent for packaging materials used in the pharmaceutical, food and beverage industries. We use the finite-elements method to analyze the conceptual design of an in-line thermal evaporation unit to produce a heated gas mixture of air and evaporated H2O2 solution. For the numerical model, the required phase-transition variables of pure H2O2 solution and of the aerosol mixture are acquired from vapor-liquid equilibrium (VLE) diagrams derived from vapor-pressure formulations. This work combines homogeneous single-phase turbulent flow with heat-transfer physics to describe the operation of the evaporation unit. We introduce the apparent heat-capacity concept to approximate the non-isothermal phase-transition process of the H2O2-containing aerosol. Empirical and analytical functions are defined to represent the temperature- and pressure-dependent material properties of the aqueous H2O2 solution, the aerosol and the gas mixture. To validate the numerical model, the simulation results are compared to experimental data on the heating power required to produce the gas mixture. This shows good agreement with the deviations below 10%. Experimental observations on the formation of deposits due to the evaporation of stabilized H2O2 solution fits the prediction made from simulation results. Y1 - 2019 U6 - https://doi.org/10.1016/j.ijheatmasstransfer.2019.118519 SN - 0017-9310 VL - 143 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schiffels, Johannes A1 - Selmer, Thorsten T1 - Combinatorial assembly of ferredoxin‐linked modules in Escherichia coli yields a testing platform for Rnf‐complexes JF - Biotechnology and Bioengineering Y1 - 2019 U6 - https://doi.org/10.1002/bit.27079 IS - accepted article SP - 1 EP - 36 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Selmer, Thorsten A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system JF - Biosensors and Bioelectronics Y1 - 2019 U6 - https://doi.org/10.1016/j.bios.2019.111332 VL - 139 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oliveira, Danilo A. A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Siqueira Jr, José R. A1 - Schöning, Michael Josef T1 - Biosensor Based on Self-Assembled Films of Graphene Oxide and Polyaniline Using a Field-Effect Device Platform JF - physica status solidi (a) applications and materials science N2 - A new functionalization method to modify capacitive electrolyte–insulator–semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS–nanofilm–enzyme) of around 15% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS–enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability. KW - capacitive electrolyte–insulator–semiconductor sensors KW - graphene oxide KW - layer-by-layer technique KW - nanomaterials KW - polyaniline Y1 - 2021 U6 - https://doi.org/10.1002/pssa.202000747 SN - 1862-6319 N1 - Corresponding author: José R. Siqueira Jr & Michael J. Schöning VL - 218 IS - 13 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Welden, Rene A1 - Nagamine Komesu, Cindy A. A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Photoelectrochemical enzymatic penicillin biosensor: A proof-of-concept experiment JF - Electrochemical Science Advances N2 - Photoelectrochemical (PEC) biosensors are a rather novel type of biosensors thatutilizelighttoprovideinformationaboutthecompositionofananalyte,enablinglight-controlled multi-analyte measurements. For enzymatic PEC biosensors,amperometric detection principles are already known in the literature. In con-trast, there is only a little information on H+-ion sensitive PEC biosensors. Inthis work, we demonstrate the detection of H+ions emerged by H+-generatingenzymes, exemplarily demonstrated with penicillinase as a model enzyme on atitanium dioxide photoanode. First, we describe the pH sensitivity of the sensorand study possible photoelectrocatalytic reactions with penicillin. Second, weshow the enzymatic PEC detection of penicillin. KW - enzymatic biosensor KW - penicillin KW - penicillinase KW - photoelectrochemistry KW - titanium dioxide photoanode Y1 - 2021 U6 - https://doi.org/10.1002/elsa.202100131 SN - 2698-5977 N1 - Corresponding author: Michael J. Schöning VL - 2 IS - 4 SP - 1 EP - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020 JF - physica status solidi (a) applications and materials science N2 - The treatment method to deactivate viable microorganisms from objects or products is termed sterilization. There are multiple forms of sterilization, each intended to be applied for a specific target, which depends on—but not limited to—the thermal, physical, and chemical stability of that target. Herein, an overview on the currently used sterilization processes in the global market is provided. Different sterilization techniques are grouped under a category that describes the method of treatment: radiation (gamma, electron beam, X-ray, and ultraviolet), thermal (dry and moist heat), and chemical (ethylene oxide, ozone, chlorine dioxide, and hydrogen peroxide). For each sterilization process, the typical process parameters as defined by regulations and the mode of antimicrobial activity are summarized. Finally, the recommended microorganisms that are used as biological indicators to validate sterilization processes in accordance with the rules that are established by various regulatory agencies are summarized. KW - bioburdens KW - sterility tests KW - sterilization efficacy KW - sterilization methods KW - validation methods Y1 - 2021 U6 - https://doi.org/10.1002/pssa.202000732 SN - 1862-6319 N1 - Corresponding author: Michael J. Schöning VL - 218 IS - 13 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Drinic, Aleksander A1 - Iken, Heiko A1 - Kröger, Nadja A1 - Zinser, Max A1 - Smeets, Ralf A1 - Köpf, Marius A1 - Kopp, Alexander A1 - Schöning, Michael Josef T1 - Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk JF - Biosensors and Bioelectronics Y1 - 2021 U6 - https://doi.org/10.1016/j.bios.2021.113204 SN - 0956-5663 VL - 183 IS - Art. 113204 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors (LAPS) for cell monitoring and biosensing JF - Current Opinion in Electrochemistry Y1 - 2021 U6 - https://doi.org/10.1016/j.coelec.2021.100727 SN - 2451-9103 IS - In Press, Journal Pre-proof PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wert, Stefan A1 - Iken, Heiko A1 - Schöning, Michael Josef A1 - Matysik, Frank-Michael T1 - Development of a temperature‐pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy JF - Electroanalysis N2 - Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating. Y1 - 2021 U6 - https://doi.org/10.1002/elan.202100089 SN - 1521-4109 IS - Early View PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Givanoudi, Stella A1 - Cornelis, Peter A1 - Rasschaert, Geertrui A1 - Wackers, Gideon A1 - Iken, Heiko A1 - Rolka, David A1 - Yongabi, Derick A1 - Robbens, Johan A1 - Schöning, Michael Josef A1 - Heyndrickx, Marc A1 - Wagner, Patrick T1 - Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source JF - Sensors and Actuators B: Chemical Y1 - 2021 U6 - https://doi.org/10.1016/j.snb.2021.129484 SN - 0925-4005 IS - In Press, Journal Pre-proof SP - Article 129484 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Haeger, Gerrit A1 - Grankin, Alina A1 - Wagner, Michaela T1 - Construction of an Aspergillus oryzae triple amylase deletion mutant as a chassis to evaluate industrially relevant amylases using multiplex CRISPR/Cas9 editing technology JF - Applied Research N2 - Aspergillus oryzae is an industrially relevant organism for the secretory production of heterologous enzymes, especially amylases. The activities of potential heterologous amylases, however, cannot be quantified directly from the supernatant due to the high background activity of native α-amylase. This activity is caused by the gene products of amyA, amyB, and amyC. In this study, an in vitro CRISPR/Cas9 system was established in A. oryzae to delete these genes simultaneously. First, pyrG of A. oryzae NSAR1 was mutated by exploiting NHEJ to generate a counter-selection marker. Next, all amylase genes were deleted simultaneously by co-transforming a repair template carrying pyrG of Aspergillus nidulans and flanking sequences of amylase gene loci. The rate of obtained triple knock-outs was 47%. We showed that triple knockouts do not retain any amylase activity in the supernatant. The established in vitro CRISPR/Cas9 system was used to achieve sequence-specific knock-in of target genes. The system was intended to incorporate a single copy of the gene of interest into the desired host for the development of screening methods. Therefore, an integration cassette for the heterologous Fpi amylase was designed to specifically target the amyB locus. The site-specific integration rate of the plasmid was 78%, with exceptional additional integrations. Integration frequency was assessed via qPCR and directly correlated with heterologous amylase activity. Hence, we could compare the efficiency between two different signal peptides. In summary, we present a strategy to exploit CRISPR/Cas9 for gene mutation, multiplex knock-out, and the targeted knock-in of an expression cassette in A. oryzae. Our system provides straightforward strain engineering and paves the way for development of fungal screening systems. KW - aspergillus KW - CRISPR/Cas9 KW - filamentous fungi KW - genome engineering Y1 - 2023 U6 - https://doi.org/10.1002/appl.202200106 SN - 2702-4288 IS - Early View SP - 1 EP - 15 PB - Wiley-VCH ER - TY - JOUR A1 - Morais, Paulo V. A1 - Suman, Pedro H. A1 - Schöning, Michael Josef A1 - Siqueira Junior, José R. A1 - Orlandi, Marcelo O. T1 - Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform JF - Chemosensors N2 - Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as “environmental health hazards” due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte–insulator–semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring. KW - Sn₃O₄ KW - nanobelts KW - field-effect sensor KW - LbL films KW - heavy metals Y1 - 2023 U6 - https://doi.org/10.3390/chemosensors11080436 SN - 2227-9040 N1 - This article belongs to the Special Issue The Application of Electrochemical Sensors or Biosensors Based on Nanomaterials VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Özsoylu, Dua A1 - Aliazizi, Fereshteh A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion JF - Biosensors and Bioelectronics N2 - As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the “real” bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an “imprinting factor” of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D). KW - Surface imprinted polymer KW - E. coli detection KW - Photolithographic mimics KW - Master stamp KW - Quartz crystal microbalance Y1 - 2024 U6 - https://doi.org/10.1016/j.bios.2024.116491 SN - 1873-4235 (eISSN) SN - 0956-5663 N1 - Corresponding author: Michael J. Schöning VL - 261 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Degering, Christian A1 - Eggert, Thorsten A1 - Puls, Michael A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Maurer, Karl-Heinz A1 - Jaeger, Karl-Erich T1 - Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and herologous signal peptides JF - Applied and environmental microbiology N2 - Bacillus subtilis and Bacillus licheniformis are widely used for the large-scale industrial production of proteins. These strains can efficiently secrete proteins into the culture medium using the general secretion (Sec) pathway. A characteristic feature of all secreted proteins is their N-terminal signal peptides, which are recognized by the secretion machinery. Here, we have studied the production of an industrially important secreted protease, namely, subtilisin BPN′ from Bacillus amyloliquefaciens. One hundred seventy-three signal peptides originating from B. subtilis and 220 signal peptides from the B. licheniformis type strain were fused to this secretion target and expressed in B. subtilis, and the resulting library was analyzed by high-throughput screening for extracellular proteolytic activity. We have identified a number of signal peptides originating from both organisms which produced significantly increased yield of the secreted protease. Interestingly, we observed that levels of extracellular protease were improved not only in B. subtilis, which was used as the screening host, but also in two different B. licheniformis strains. To date, it is impossible to predict which signal peptide will result in better secretion and thus an improved yield of a given extracellular target protein. Our data show that screening a library consisting of homologous and heterologous signal peptides fused to a target protein can identify more-effective signal peptides, resulting in improved protein export not only in the original screening host but also in different production strains. Y1 - 2010 U6 - https://doi.org/10.1128/AEM.01146-10 SN - 1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print) VL - 76 IS - 19 SP - 6370 EP - 6378 PB - American Society for Microbiology CY - Washington, DC ER - TY - JOUR A1 - Deppe, Veronika Maria A1 - Bongaerts, Johannes A1 - O'Connell, Timothy A1 - Maurer, Karl-Heinz A1 - Meinhardt, Friedhelm T1 - Enzymatic deglycation of Amadori products in bacteria JF - Applied microbiology and biotechnology Y1 - 2011 SN - 1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print) VL - Vol. 90 IS - Iss. 2 SP - 399 EP - 406 PB - Springer CY - Berlin ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wilming, Anja A1 - Begemann, Jens A1 - Kuhne, Stefan A1 - Regestein, Lars A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Maurer, Karl-Heinz A1 - Büchs, Jochen T1 - Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations JF - Biochemical engineering journal Y1 - 2013 SN - 1873-295X (E-Journal); 1369-703X (Print) VL - Vol. 73 SP - 29 EP - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scheele, Sandra A1 - Oertel, Dan A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Hellmuth, Hendrik A1 - Maurer, Karl-Heinz A1 - Bott, Michael A1 - Freudl, Roland T1 - Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol–xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum JF - Microbial biotechnology Y1 - 2013 SN - 1751-7915 SP - 202 EP - 206 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Gonzalez, Laura Osorio A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development and characterization of a field-effect biosensor for the detection of acetoin JF - Biosensors and Bioelectronics N2 - A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples. Y1 - 2018 U6 - https://doi.org/10.1016/j.bios.2018.05.023 VL - 115 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schroeter, Rebecca A1 - Hoffmann, Tamara A1 - Voigt, Birgit A1 - Meyer, Hanna A1 - Bleisteiner, Monika A1 - Muntel, Jan A1 - Jürgen, Britta A1 - Albrecht, Dirk A1 - Becher, Dörte A1 - Lalk, Michael A1 - Evers, Stefan A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Putzer, Harald A1 - Hecker, Michael A1 - Schweder, Thomas A1 - Bremer, Erhard T1 - Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges JF - PLoS ONE N2 - The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0080956 SN - 1932-6203 VL - 8 IS - 11 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Voigt, Birgit A1 - Schroeter, Rebecca A1 - Jürgen, Britta A1 - Albrecht, Dirk A1 - Evers, Stefan A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Schweder, Thomas A1 - Hecker, Michael T1 - The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon JF - Proteomics Y1 - 2013 SN - 1615-9861 (E-Journal); 1615-9853 (Print) VL - Vol. 13 IS - Iss. 14 SP - 2140 EP - 2146 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Handtke, Stefan A1 - Volland, Sonja A1 - Methling, Karen A1 - Albrecht, Dirk A1 - Becher, Dörte A1 - Nehls, Jenny A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Lalk, Michael A1 - Liesegang, Heiko A1 - Voigt, Birgit A1 - Daniel, Rolf A1 - Hecker, Michael T1 - Cell physiology of the biotechnological relevant bacterium Bacillus pumilus - An omics-based approach JF - Journal of Biotechnology N2 - Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC–MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed. Y1 - 2014 U6 - https://doi.org/10.1016/j.jbiotec.2014.08.028 SN - 1873-4863 (E-Journal); 0168-1656 (Print) IS - 192(A) SP - 204 EP - 214 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wiegand, Sandra A1 - Dietrich, Sascha A1 - Hertel, Robert A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Volland, Sonja A1 - Daniel, Rolf A1 - Liesegang, Heiko T1 - RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation JF - BMC genomics Y1 - 2013 SN - 1471-2164 VL - Vol. 14 SP - 667 PB - BioMed Central CY - London ER - TY - THES A1 - Bronder, Thomas T1 - Label-free detection of tuberculosis DNA with capacitive field-effect biosensors Y1 - 2020 U6 - https://doi.org/10.17192/z2021.0056 N1 - Dissertation, Universität, Marburg 2020 PB - Philipps-Universität Marburg CY - Marburg ER - TY - JOUR A1 - Falkenberg, Fabian A1 - Rahba, Jade A1 - Fischer, David A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T JF - FEBS Open Bio N2 - Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0–12.0 and temperature 20–80 °C, optimally at pH 9.0–9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58% of residual activity when incubated at 10 °C with 5% (v/v) H2O2 for 1 h while stimulated at 1% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future. KW - Alkalihalobacillus okhensis KW - detergent protease KW - halotolerant protease KW - high-alkaline subtilisin KW - oxidative stable protease Y1 - 2022 U6 - https://doi.org/10.1002/2211-5463.13457 SN - 2211-5463 N1 - Corresponding author: Petra Siegert VL - 12 IS - 10 SP - 1729 EP - 1746 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Deppe, Veronika Maria A1 - Klatte, Stephanie A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - O'Connell, Timothy A1 - Meinhardt, Friedhelm T1 - Genetic control of Amadori product degradation in Bacillus subtilis via regulation of frlBONMD expression by FrlR JF - Applied and environmental microbiology Y1 - 2011 SN - 1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print) VL - Vol. 77 IS - No. 9 SP - 2839 EP - 2846 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - CHAP A1 - Bäcker, Matthias A1 - Koch, C. A1 - Geiger, F. A1 - Eber, F. A1 - Gliemann, H. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier T2 - Procedia Engineering Y1 - 2016 U6 - https://doi.org/10.1016/j.proeng.2016.11.228 SN - 1877-7058 N1 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary VL - Vol. 168 SP - 618 EP - 621 ER - TY - CHAP A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Bronder, Thomas A1 - Bäcker, Matthias A1 - Wang, Ping A1 - Schöning, Michael Josef T1 - An application of a scanning light-addressable potentiometric sensor for label-free DNA detection T2 - 11. Dresdner Sensor-Symposium : 9.-11.12.2013 Y1 - 2013 SN - 978-3-9813484-5-3 SP - 164 EP - 168 ER - TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Scheja, S. A1 - Wu, Chunsheng A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Electrostatic Detection of Unlabelled Single- and Double-stranded DNA Using Capacitive Field-effect Devices Functionalized with a Positively Charged Polyelectrolyte Layer JF - Procedia Engineering N2 - Capacitive field-effect electrolyte-insulator-semiconductor sensors consisting of an Al-p-Si-SiO2 structure have been used for the electrical detection of unlabelled single- and double-stranded DNA (dsDNA) molecules by their intrinsic charge. A simple functionalization protocol based on the layer-by-layer (LbL) technique was used to prepare a weak polyelectrolyte/probe-DNA bilayer, followed by the hybridization with complementary target DNA molecules. Due to the flat orientation of the LbL-adsorbed DNA molecules, a high sensor signal has been achieved. In addition, direct label-free detection of in-solution hybridized dsDNA molecules has been studied. Y1 - 2015 U6 - https://doi.org/10.1016/j.proeng.2015.08.710 SN - 1877-7058 N1 - Eurosensors 2015 VL - 120 SP - 544 EP - 547 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef T1 - Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation JF - Applied Physics A: Materials Science & Processing. 87 (2007), H. 3 Y1 - 2007 SN - 0947-8396 N1 - Special Issue “From Surface Science to Nanoscale Devices” SP - 517 EP - 524 ER - TY - JOUR A1 - Borgmeier, Claudia A1 - Bongaerts, Johannes A1 - Meinhardt, Friedhelm T1 - Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production JF - Journal of biotechnology N2 - Disruption experiments targeted at the Bacillus licheniformis degSU operon and GFP-reporter analysis provided evidence for promoter activity immediately upstream of degU. pMutin mediated concomitant introduction of the degU32 allele – known to cause hypersecretion in Bacillus subtilis – resulted in a marked increase in protease activity. Application of 5-fluorouracil based counterselection through establishment of a phosphoribosyltransferase deficient Δupp strain eventually facilitated the marker-free introduction of degU32 leading to further protease enhancement achieving levels as for hypersecreting wild strains in which degU was overexpressed. Surprisingly, deletion of rapG – known to interfere with DegU DNA-binding in B. subtilis – did not enhance protease production neither in the wild type nor in the degU32 strain. The combination of degU32 and Δupp counterselection in the type strain is not only equally effective as in hypersecreting wild strains with respect to protease production but furthermore facilitates genetic strain improvement aiming at biological containment and effectiveness of biotechnological processes. KW - Marker-free mutagenesis KW - Extracellular enzymes KW - Uracil-phosphoribosyltransferase KW - Hypersecretion Y1 - 2012 U6 - https://doi.org/10.1016/j.jbiotec.2012.02.011 SN - 1873-4863 (E-Journal); 0168-1656 (Print) VL - 159 IS - 1-2 SP - 12 EP - 20 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Sorich, Maren A1 - Bartz, Alexander A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Lisdat, Fred A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate JF - Sensors and Actuators B: Chemical N2 - An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer’s solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure. Y1 - 2016 U6 - https://doi.org/10.1016/j.snb.2016.06.064 SN - 0925-4005 VL - 237 SP - 190 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane JF - Chemical Communications N2 - Capacitive field-effect sensors modified with a multi-enzyme membrane have been applied for an electronic transduction of biochemical signals processed by enzyme-based AND-Reset and OR-Reset logic gates. The local pH change at the sensor surface induced by the enzymatic reaction was used for the activation of the Reset function for the first time. Y1 - 2015 U6 - https://doi.org/10.1039/C5CC01362C VL - 51 SP - 6564 EP - 6567 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Razavi, A. A1 - Williams, O. A. A1 - Bijnens, N. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing JF - Biosensors and Bioelectronics. 24 (2009), H. 5 Y1 - 2009 SN - 0956-5663 N1 - Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14-16, 2008 ; Zeitschrift früher u.d.T. : Biosensors SP - 1298 EP - 1304 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abouzar, Maryam H. A1 - Wagner, Torsten A1 - Näther, Niko A1 - Rolka, David A1 - Yoshinobu, Tatsuo A1 - Kloock, Joachim P. A1 - Turek, Monika A1 - Ingebrandt, Sven A1 - Poghossian, Arshak T1 - A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices T2 - MRS Proceedings Y1 - 2006 U6 - https://doi.org/10.1557/PROC-0952-F08-02 N1 - Vol. 952 - Symposium F - Integrated Nanosensors SP - 1 EP - 9 ER - TY - JOUR A1 - Turek, M. A1 - Keusgen, M. A1 - Poghossian, Arshak A1 - Mulchandani, A. A1 - Wang, J. A1 - Schöning, Michael Josef T1 - Enzyme-modified electrolyte-insulator-semiconductor sensors JF - Journal of Contemporary Physics. 43 (2008), H. 2 Y1 - 2008 SN - 1934-9378 N1 - Armenian Academy of Sciences SP - 82 EP - 85 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Yeung, C.-K. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Microsensors based on ion-sensitive field-effect transistors for biomedical applications JF - Biomedizinische Technik. 49 (2004), H. 2 Y1 - 2004 SN - 0932-4666 SP - 1036 EP - 1037 ER - TY - JOUR A1 - Bäcker, Matthias A1 - Beging, Stefan A1 - Biselli, Manfred A1 - Poghossian, Arshak A1 - Wang, J. A1 - Zang, Werner A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Concept for a solid-state multi-parameter sensor system for cell-culture monitoring JF - Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI Y1 - 2009 SN - 0013-4686 SP - 6107 EP - 6112 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Buniatyan, Vahe V. A1 - Matirosyan, N. A1 - Abouzar, Maryam H. A1 - Schubert, J. A1 - Zander, W. A1 - Gevorgian, S. A1 - Schöning, Michael Josef A1 - Poghossian, Arshak T1 - Capacitive field-effect pH sensor based on an electrolyte-ferroelectric-insulator-semiconductor structure JF - SENSOR 2009 : : 14th International Conference on Sensors, Technologies, Electronics and Applications; Nürnberg, Germany, 26 - 28 May 2009; proceedings; [part of] Sensor + Test Conference 2009 / AMA, Fachverband für Sensorik e.V Y1 - 2009 SN - 9783981099355 N1 - AMA, Fachverband für Sensorik ; Sensor International Conference ; (14 : ; 2009.05.26-28 : ; Nürnberg) SP - 317 EP - 322 PB - AMA Service CY - Wunstorf ER - TY - JOUR A1 - Poghossian, Arshak A1 - Berndsen, Lars A1 - Schöning, Michael Josef T1 - Chemical sensor as physical sensor: ISFET-based flowvelocity, flow-direction and diffusion-coefficient sensor JF - Sensors and Actuators B. 95 (2003), H. 1-3 Y1 - 2003 SN - 0925-4005 SP - 384 EP - 390 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Wagner, Holger A1 - Schöning, Michael Josef T1 - Functional testing and characterisation of (bio-)chemical sensors on wafer level JF - Sensors and Actuators B: Chemical. 154 (2011), H. 2 Y1 - 2011 SN - 1873-3077 N1 - EUROSENSORS XXIII SP - 169 EP - 173 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Berndsen, L. A1 - Schultze, J. W. A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - „High order“ hybrid sensor module based on an identical transducer principle JF - Chemical and biological sensors and analytical methods : proceedings of the international symposium / Sensor, Physical Electrochemistry, and Organic and Biological Electrochemistry Divisions. Ed.: M. Butler Y1 - 2001 SN - 1-56677-351-2 N1 - International Symposium: Chemical and Biological Sensors and Analytical Methods ; (2 : 2001.) SP - 143 EP - 152 PB - Electrochemical Society CY - Pennington, NJ ER - TY - JOUR A1 - Poghossian, Arshak A1 - Thust, M. A1 - Schroth, P. A1 - Steffen, A. A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - Penicillin detection by means of silicon-based field-effect structures JF - Sensors and Materials. 13 (2001), H. 4 Y1 - 2001 SN - 0392-2510 SP - 207 EP - 223 ER - TY - JOUR A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Wenmackers, Sylvia A1 - Janssens, Stoffel D. A1 - Haenen, Ken A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Capacitive field-effect (bio-)chemical sensors based on nanocrystalline diamond films JF - Diamond Electronics and Bioelectronics — Fundamentals to Applications III, edited by P. Bergonzo, [u.a.] Y1 - 2010 N1 - MRS Proceedings Volume 1203 paper 1203-J17-31 ; Mater. Res. Soc. Sympos. Proc. Vol 1203 (2010) ; Materials Research Society SP - 1 EP - 6 ER - TY - CHAP A1 - Weil, M. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Cherstvy, A. T1 - Electrical monitoring of layer-by-layer adsorption of oppositely charged macromolecules by means of capacitive field-effect devices Y1 - 2012 SN - 978-3-9813484-2-2 U6 - https://doi.org/10.5162/IMCS2012/P2.5.2 SP - 1575 EP - 1578 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Näther, Niko A1 - Auger, V. A1 - Poghossian, Arshak A1 - Koudelka-Hep, M. T1 - Miniaturised flow-through cell with integrated capacitive EIS sensor fabricated at wafer level using Si and SU-8 technologies JF - Sensors and Actuators B. 108 (2005), H. 1-2 Y1 - 2005 SN - 0925-4005 N1 - Proceedings of the Tenth International Meeting on Chemical Sensors — IMCS - 10 2004 SP - 986 EP - 992 ER - TY - JOUR A1 - Jablonski, Melanie A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Detection of plant virus particles with a capacitive field-effect sensor JF - Analytical and Bioanalytical Chemistry N2 - Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied. KW - Plant virus KW - Capacitive field-effect sensor KW - Tobacco mosaic virus (TMV) KW - Label-free detection KW - Zeta potential Y1 - 2021 U6 - https://doi.org/10.1007/s00216-021-03448-8 SN - 1618-2650 N1 - Corresponding authors: Arshak Poghossian & Michael J. Schöning VL - 413 SP - 5669 EP - 5678 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Recent progress in silicon-based biologically sensitive field-effect devices JF - Current Opinion in Electrochemistry N2 - Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor’s recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential. Y1 - 2021 U6 - https://doi.org/10.1016/j.coelec.2021.100811 SN - 2451-9103 IS - Article number: 100811 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Schroth, P. A1 - Simonis, A. A1 - Lüth, H. T1 - An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime JF - Sensors and Actuators B. 76 (2001), H. 1-3 Y1 - 2001 SN - 0925-4005 SP - 519 EP - 526 ER - TY - JOUR A1 - Huck, Christina A1 - Schiffels, Johannes A1 - Herrera, Cony N. A1 - Schelden, Maximilian A1 - Selmer, Thorsten A1 - Poghossian, Arshak A1 - Baumann, Marcus A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor JF - Physica Status Solidi (A) N2 - Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the “welfare” of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis–Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed. Y1 - 2013 U6 - https://doi.org/10.1002/pssa.201200900 SN - 0031-8965 VL - 210 IS - 5 SP - 926 EP - 931 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Welden, Melanie A1 - Severins, Robin A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Studying the immobilization of acetoin reductase with Tobacco mosaic virus particles on capacitive field-effect sensors T2 - 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) N2 - A capacitive electrolyte-insulator-semiconductor (EISCAP) biosensor modified with Tobacco mosaic virus (TMV) particles for the detection of acetoin is presented. The enzyme acetoin reductase (AR) was immobilized on the surface of the EISCAP using TMV particles as nanoscaffolds. The study focused on the optimization of the TMV-assisted AR immobilization on the Ta 2 O 5 -gate EISCAP surface. The TMV-assisted acetoin EISCAPs were electrochemically characterized by means of leakage-current, capacitance-voltage, and constant-capacitance measurements. The TMV-modified transducer surface was studied via scanning electron microscopy. KW - Tobacco mosaic virus KW - acetoin KW - capacitive field-effect biosensor KW - enzyme immobilization Y1 - 2022 SN - 978-1-6654-5860-3 (Online) SN - 978-1-6654-5861-0 (Print) U6 - https://doi.org/10.1109/ISOEN54820.2022.9789657 N1 - IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 29 May 2022 - 01 June 2022, Aveiro, Portugal. PB - IEEE ER - TY - CHAP A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Scheja, S. A1 - Wu, Chunsheng A1 - Metzger-Boddien, C. A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free Electrostatic Detection of DNA Amplification by PCR Using Capacitive Field-effect Devices T2 - Procedia Engineering N2 - A capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor modified with a positively charged weak polyelectrolyte of poly(allylamine hydrochloride) (PAH)/single-stranded probe DNA (ssDNA) bilayer has been used for a label-free electrostatic detection of pathogen-specific DNA amplification via polymerase chain reaction (PCR). The sensor is able to distinguish between positive and negative PCR solutions, to detect the existence of target DNA amplicons in PCR samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Y1 - 2016 U6 - https://doi.org/10.1016/j.proeng.2016.11.512 SN - 1877-7058 N1 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary VL - Vol. 168 SP - 514 EP - 517 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Siqueira, Jose R. A1 - Werner, Frederik A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Zucolotto, Valtencir A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors JF - Journal of Physical Chemistry C. 113 (2009), H. 33 Y1 - 2009 SN - 1932-7455 SP - 14765 EP - 14770 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Brinkmann, D. A1 - Rolka, David A1 - Demuth, C. A1 - Poghossian, Arshak T1 - CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure JF - Sensors and Actuators B: Chemical. 111-112 (2005) Y1 - 2005 SN - 0925-4005 N1 - Eurosensors XVIII 2004 - The 18th European Conference on Solid-State Transducers SP - 423 EP - 429 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Buniatyan, V. V. A1 - Wagner, Torsten A1 - Miamoto, K. A1 - Yoshinobu, T. A1 - Schöning, Michael Josef T1 - Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk JF - Sensor and Actuators B: Chemical N2 - The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems. Y1 - 2017 U6 - https://doi.org/10.1016/j.snb.2017.01.047 SN - 0925-4005 IS - 244 SP - 1071 EP - 1079 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Poghossian, Arshak T1 - Detection of charged macromolecules by means of field-effect devices (FEDs): possibilities and limitations JF - Electrochemical sensors, biosensors and their biomedical applications / ed. by Xueji Zhang ... Y1 - 2008 SN - 978-0-12-373738-0 SP - 187 EP - 212 PB - Elsevier Acad. Press CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Bäcker, Matthias A1 - Iken, Heiko A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Concept for a biomolecular logic chip with an integrated sensor and actuator function JF - Physica status solidi (a) N2 - A concept for a new generation of an integrated multi-functional biosensor/actuator system is developed, which is based on biomolecular logic principles. Such a system is expected to be able to detect multiple biochemical input signals simultaneously and in real-time and convert them into electrical output signals with logical operations such as OR, AND, etc. The system can be designed as a closed-loop drug release device triggered by an enzyme logic gate, while the release of the drug induced by the actuator at the required dosage and timing will be controlled by an additional drug sensor. Thus, the system could help to make an accurate and specific diagnosis. The presented concept is exemplarily demonstrated by using an enzyme logic gate based on a glucose/glucose oxidase system, a temperature-responsive hydrogel mimicking the actuator function and an insulin (drug) sensor. In this work, the results of functional testing of individual amperometric glucose and insulin sensors as well as an impedimetric sensor for the detection of the hydrogel swelling/shrinking are presented. Y1 - 2015 U6 - https://doi.org/10.1002/pssa.201431913 SN - 1862-6319 VL - 212 IS - 6 SP - 1382 EP - 1388 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Christiaens, P. A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Bijnens, N. A1 - Williams, O. A. A1 - Daenen, M. A1 - Haenen, K. A1 - Douthéret, O. A1 - Haen, J. d´ A1 - Mekhalif, Z. A1 - Schöning, Michael Josef A1 - Wagner, P. T1 - pH sensitivity of nanocrystalline diamond films JF - Physica status solidi (A). 204 (2007), H. 9 Y1 - 2007 SN - 0031-8965 SP - 2925 EP - 2930 ER - TY - JOUR A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Schöning, Michael Josef T1 - Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor JF - Sensors and Actuators B: Chemical N2 - A multi-spot light-addressable potentiometric sensor (LAPS), which belongs to the family of semiconductor field-effect devices, was applied for label-free detection of double-stranded deoxyribonucleic acid (dsDNA) molecules by their intrinsic molecular charge. To reduce the distance between the DNA charge and sensor surface and thus, to enhance the electrostatic coupling between the dsDNA molecules and the LAPS, the negatively charged dsDNA molecules were electrostatically adsorbed onto the gate surface of the LAPS covered with a positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)). The surface potential changes in each spot of the LAPS, induced by the layer-by-layer adsorption of a PAH/dsDNA bilayer, were recorded by means of photocurrent-voltage and constant-photocurrent measurements. In addition, the surface morphology of the gate surface before and after consecutive electrostatic adsorption of PAH and dsDNA layers was studied by atomic force microscopy measurements. Moreover, fluorescence microscopy was used to verify the successful adsorption of dsDNA molecules onto the PAH-modified LAPS surface. A high sensor signal of 25 mV was registered after adsorption of 10 nM dsDNA molecules. The lower detection limit is down to 0.1 nM dsDNA. The obtained results demonstrate that the PAH-modified LAPS device provides a convenient and rapid platform for the direct label-free electrical detection of in-solution hybridized dsDNA molecules. KW - Layer-by-layer adsorption KW - Poly(allylamine hydrochloride) KW - Label-free detection KW - DNA biosensor KW - LAPS KW - Field effect Y1 - 2016 U6 - https://doi.org/10.1016/j.snb.2016.02.004 SN - 0925-4005 IS - 229 SP - 506 EP - 512 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Label-free sensing of biomolecules with field-effect devices for clinical applications JF - Electroanalysis N2 - Among the variety of transducer concepts proposed for label-free detection of biomolecules, the semiconductor field-effect device (FED) is one of the most attractive platforms. As medical techniques continue to progress towards diagnostic and therapies based on biomarkers, the ability of FEDs for a label-free, fast and real-time detection of multiple pathogenic and physiologically relevant molecules with high specificity and sensitivity offers very promising prospects for their application in point-of-care and personalized medicine for an early diagnosis and treatment of diseases. The presented paper reviews recent advances and current trends in research and development of different FEDs for label-free, direct electrical detection of charged biomolecules by their intrinsic molecular charge. The authors are mainly focusing on the detection of the DNA hybridization event, antibody-antigen affinity reaction as well as clinically relevant biomolecules such as cardiac and cancer biomarkers. Y1 - 2014 U6 - https://doi.org/10.1002/elan.201400073 SN - 1521-4109 (E-Journal); 1040-0397 (Print) VL - 26 IS - 6 SP - 1197 EP - 1213 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips JF - Electroanalysis N2 - The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug-release, and closed-loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field-effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field-effect electrolyte-insulator-semiconductor sensor modified with a multi-enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed-loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor. Y1 - 2017 U6 - https://doi.org/10.1002/elan.201700208 SN - 1521-4109 VL - 29 IS - 8 SP - 1840 EP - 1849 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Platen, Johannes A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Microstructured Nanostructures – nanostructuring by means of conventional photolithography and layer-expansion technique N2 - A new and simple method for nanostructuring using conventional photolithography and layer expansion or pattern-size reduction technique is presented, which can further be applied for the fabrication of different nanostructures and nano-devices. The method is based on the conversion of a photolithographically patterned metal layer to a metal-oxide mask with improved pattern-size resolution using thermal oxidation. With this technique, the pattern size can be scaled down to several nanometer dimensions. The proposed method is experimentally demonstrated by preparing nanostructures with different configurations and layouts, like circles, rectangles, trapezoids, “fluidic-channel”-, “cantilever”- and meander-type structures. KW - Biosensor KW - Nanostructuring KW - layer expansion KW - pattern-size reduction KW - self-aligned patterning Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1477 ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Poghossian, Arshak A1 - Miyamoto, K.I. A1 - Werner, C.F. A1 - Krause, S. A1 - Yoshinobu, T. T1 - Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging T2 - Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7 Y1 - 2018 SN - 9780128097397 SP - 295 EP - 308 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Yoshinobu, Tatsuo A1 - Simonis, A. A1 - Ecken, H. A1 - Lüth, Hans A1 - Schöning, Michael Josef T1 - Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? JF - Sensors and Actuators B. 78 (2001), H. 1-3 Y1 - 2001 SN - 0925-4005 SP - 237 EP - 242 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Chemical and biological field-effect sensors for liquids – a status report JF - Handbook of biosensors and biochips / ed. Robert S. Marks ... Bd. 1 Y1 - 2007 SN - 978-0-470-01905-4 SP - 395 EP - 412 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Poghossian, Arshak A1 - Weil, M. A1 - Cherstvy, A. G. A1 - Schöning, Michael Josef T1 - Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices JF - Analytical and bioanalytical chemistry N2 - The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte–insulator–semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance–voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed. Y1 - 2013 U6 - https://doi.org/10.1007/s00216-013-6951-9 SN - 1432-1130 ; 1618-2642 VL - 405 IS - 20 SP - 6425 EP - 6436 PB - Springer CY - Berlin ER - TY - CHAP A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - DNA-hybridization detection using light-addressable potentiometric sensor modified with gold layer T2 - Sensoren und Messsysteme 2014 ; Beiträge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in Nürnberg. (ITG-Fachbericht ; 250) Y1 - 2014 SN - 978-3-8007-3622-5 SP - 1 EP - 4 PB - VDE-Verl. CY - Düsseldorf ER - TY - CHAP A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Buniatyan, V. A1 - Schöning, Michael Josef T1 - Multi-parameter detection for supporting monitoring and control of biogas processes in agriculture T2 - Sensoren und Messsysteme 2014 ; Beiträge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in Nürnberg. (ITG-Fachbericht ; 250) Y1 - 2014 SN - 978-3-8007-3622-5 SP - 1 EP - 5 PB - VDE-Verl. CY - Berlin ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Poghossian, Arshak A1 - Glück, Olaf A1 - Thust, Marion T1 - Electrochemical methods for the determination of chemical variables in aqueous media T2 - Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement Y1 - 2014 SN - 978-1-4398-4891-3 SP - 55-1 EP - 55-54 PB - CRC Pr. CY - Boca Raton, Fla. ER - TY - JOUR A1 - Molinnus, Denise A1 - Bäcker, Matthias A1 - Siegert, Petra A1 - Willenberg, H. A1 - Poghossian, Arshak A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Detection of Adrenaline Based on Substrate Recycling Amplification JF - Procedia Engineering N2 - An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied. Y1 - 2015 U6 - https://doi.org/10.1016/j.proeng.2015.08.708 SN - 1877-7058 N1 - Eurosensors 2015 VL - 120 SP - 540 EP - 543 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Cherstvy, Andrey G. A1 - Pedraza, Angela M. A1 - Ingebrandt, Sven A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling JF - Physica Status Solidi (a) N2 - Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface. Y1 - 2012 U6 - https://doi.org/10.1002/pssa.201100710 SN - 1862-6319 VL - 209 SP - 925 EP - 934 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Poghossian, Arshak A1 - Geissler, Hanno A1 - Schöning, Michael Josef T1 - Rapid methods and sensors for milk quality monitoring and spoilage detection JF - Biosensors and Bioelectronics Y1 - 2019 U6 - https://doi.org/10.1016/j.bios.2019.04.040 SN - 0956-5663 VL - 140 IS - Article 111272 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Wagner, Holger A1 - Schöning, Michael Josef T1 - Functional testing and characterisation of (bio-)chemical sensors on wafer level JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 835 EP - 838 ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Siqueira, José R. Jr. A1 - Oliveira, Osvaldo N. Jr. A1 - Moritz, Werner A1 - Schöning, Michael Josef T1 - Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing JF - Physica Status Solidi (A). 207 (2010), H. 4 Y1 - 2010 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 SP - 884 EP - 890 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Field-effect devices for detecting cellular signals JF - Seminars in Cell & Developmental Biology. 20 (2009), H. 1 Y1 - 2009 SN - 1096-3634 SP - 41 EP - 48 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Siqueira, José R. Jr. A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Zucolotto, Valtencir A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices JF - Physica status solidi (a). 207 (2010), H. 4 Y1 - 2010 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 SP - 781 EP - 786 ER - TY - CHAP A1 - Buniatyan, V. V. A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Rustamyan, L. G. A1 - Hovnikyan, H. H. T1 - Equivalent circuit and optimization of impedance characteristics of an electrolyte conductivity sensor T2 - Proceedings of State Engineering University Armenia : Series Information technologies, electronics, radio engineering Y1 - 2014 VL - Iss. 17 IS - No. 1 SP - 69 EP - 76 ER - TY - JOUR A1 - Näther, Niko A1 - Rolka, David A1 - Poghossian, Arshak A1 - Koudelka-Hep, M. A1 - Schöning, Michael Josef T1 - Two microcell flow-injection analysis (FIA) platforms for capacitive silicon-based field-effect sensors JF - Electrochimica Acta. 51 (2005), H. 5 Y1 - 2005 SN - 0013-4686 U6 - https://doi.org/10.1016/j.electacta.2005.04.066 SP - 924 EP - 929 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Cherstvy, A. A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices JF - Sensors and Actuators B. 111-112 (2005) Y1 - 2005 SN - 0925-4005 N1 - Eurosensors XVIII 2004 — The 18th European Conference on Solid-State Transducers SP - 470 EP - 480 ER - TY - JOUR A1 - Pita, Marcos A1 - Krämer, Melina A1 - Zouh, Jian A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Fernandez, Victor M. A1 - Katz, Evgeny T1 - Optoelectronic Properties of Nanostructured Ensembles Controlled by Biomolecular Logic Systems JF - ACS Nano. 10 (2008), H. 2 Y1 - 2008 SN - 1936-086X SP - 2160 EP - 2166 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schusser, Sebastian A1 - Bäcker, M. A1 - Leinhos, Marcel A1 - Schöning, Michael Josef T1 - Real-time in-situ electrical monitoring of the degradation of biopolymers using semiconductor field-effect devices T2 - Biodegradable biopolymers. Vol. 1 Y1 - 2015 SN - 978-1-63483-632-6 SP - 135 EP - 153 PB - Nova Science Publ. CY - Hauppauge ER - TY - CHAP A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Schöning, Michael Josef T1 - Label-free sensing of biomolecules by their intrinsic molecular charge using field-effect devices T2 - Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13 Y1 - 2015 SN - 978-5-8084-1991-9 SP - 61 EP - 63 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schumacher, Kerstin A1 - Kloock, Joachim P. A1 - Rosenkranz, Christian A1 - Schultze, Joachim W. A1 - Müller-Veggian, Mattea A1 - Schöning, Michael Josef T1 - Functional testing and characterisation of ISFETs on wafer level by means of a micro-droplet cell N2 - A wafer-level functionality testing and characterisation system for ISFETs (ionsensitive field-effect transistor) is realised by means of integration of a specifically designed capillary electrochemical micro-droplet cell into a commercial wafer prober-station. The developed system allows the identification and selection of “good” ISFETs at the earliest stage and to avoid expensive bonding, encapsulation and packaging processes for nonfunctioning ISFETs and thus, to decrease costs, which are wasted for bad dies. The developed system is also feasible for wafer-level characterisation of ISFETs in terms of sensitivity, hysteresis and response time. Additionally, the system might be also utilised for wafer-level testing of further electrochemical sensors. KW - Biosensor KW - Biosensorik KW - ISFET KW - Wafer KW - ISFET KW - wafer-level testing KW - capillary micro-droplet cell Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1259 ER - TY - JOUR A1 - Gasparyan, Ferdinand V. A1 - Poghossian, Arshak A1 - Vitusevich, Svetlana A. A1 - Petrychuk, Mykhaylo V. A1 - Sydoruk, Viktor A. A1 - Siqueira, José R. Jr. A1 - Oliveira, Osvaldo N. Jr. A1 - Offenhäusser, Andreas A1 - Schöning, Michael Josef T1 - Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers JF - IEEE Sensors Journal. 11 (2011), H. 1 Y1 - 2011 SN - 1530-437X SP - 142 EP - 149 PB - IEEE CY - New York ER - TY - CHAP A1 - Jablonski, Melanie A1 - Koch, Claudia A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier T2 - MDPI Proceeding Y1 - 2017 U6 - https://doi.org/10.3390/proceedings1040505 N1 - Eurosensors 2017 Conference, Paris, France, 3–6 September 2017 VL - 1 IS - 4 ER - TY - JOUR A1 - Gun, Jenny A1 - Gutkin, Vitaly A1 - Lev, Ovadia A1 - Boyen, Hans-Gerd A1 - Saitner, Marc A1 - Wagner, Patrick A1 - Olieslaeger, Marc D´ A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices JF - Journal of Physical Chemistry C. 115 (2011), H. 11 Y1 - 2011 SN - 1932-7455 SP - 4439 EP - 4445 PB - American Cemical Society CY - Washington, DC ER - TY - JOUR A1 - Gun, Jenny A1 - Rizkov, Dan A1 - Lev, Ovadia A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing JF - Microchimica Acta. 164 (2008), H. 3-4 Y1 - 2008 SN - 1436-5073 SP - 395 EP - 404 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Flow-velocity microsensors based on semiconductor field-effect structures JF - Sensors. 3 (2003), H. 7 Y1 - 2003 SN - 1424-8220 SP - 202 EP - 212 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Silicon-based chemical and biological field-effect sensors T2 - Encyclopedia of Sensors. Vol. 9 S - Sk Y1 - 2006 SN - 1-58883-065-9 SP - 463 EP - 534 PB - ASP, American Scientific Publ. CY - Stevenson Ranch, Calif. ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Christiaens, P. A1 - Williams, O. A. A1 - Haenen, K. A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors JF - Journal of Contemporary Physics. 43 (2008), H. 2 Y1 - 2008 SN - 1934-9378 N1 - Armenian Academy of Sciences SP - 77 EP - 81 ER - TY - JOUR A1 - Ingebrandt, S. A1 - Han, Y. A1 - Nakamura, F. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Offenhäusser, A. T1 - Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors JF - Biosensors and Bioelectronics. 22 (2007), H. 12 Y1 - 2007 SN - 0956-5663 SP - 2834 EP - 2840 ER - TY - JOUR A1 - Katz, Evgeny A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics JF - Analytical and Bioanalytical Chemistry N2 - The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a “filter” system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Y1 - 2017 U6 - https://doi.org/10.1007/s00216-016-0079-7 SN - 1618-2650 VL - 409 SP - 81 EP - 94 PB - Springer CY - Berlin ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Capacitive field-effect eis chemical sensors and biosensors: A status report JF - Sensors N2 - Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed. Y1 - 2020 U6 - https://doi.org/10.3390/s20195639 SN - 1424-8220 VL - 20 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Molinnus, Denise A1 - Hardt, Gabriel A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling JF - Electroanalysis N2 - An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5–1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma. Y1 - 2018 U6 - https://doi.org/10.1002/elan.201800026 SN - 1521-4109 VL - 30 IS - 5 SP - 937 EP - 942 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Christiaens, P. A1 - Williams, O. A. A1 - Haenen, K. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Nanocrystalline diamond-based field-effect (bio-)chemical sensor JF - 8. Dresdner Sensor-Symposium : Sensoren für Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme für die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung für die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.) Y1 - 2007 SN - 978-3-940046-45-1 N1 - Dresdner Sensor-Symposium <8, 2007, Dresden> ; Dresdner Beiträge zur Sensorik ; 29 SP - 191 EP - 194 PB - TUDpress, Verl. der Wissenschaften CY - Dresden ER - TY - CHAP A1 - Beging, Stefan A1 - Poghossian, Arshak A1 - Mlynek, D. A1 - Hataihimakul, S. A1 - Pedraza, A. A1 - Dhawan, S. A1 - Laube, N. A1 - Kleinen, L. A1 - Baldsiefen, G. A1 - Busch, H. A1 - Schöning, Michael Josef T1 - Ion-selective sensors for the determination of the risk of urinary stone formation T2 - Micro- and Nanosystems in biochemical diagnosis : Principles and applications Y1 - 2010 SP - 74 EP - 80 CY - Warsaw ER - TY - JOUR A1 - Schusser, Sebastian A1 - Krischer, Maximillian A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors JF - Analytical Chemistry N2 - Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte–insulator–semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(d,l-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers. Y1 - 2015 U6 - https://doi.org/10.1021/acs.analchem.5b00617 SN - 1520-6882 VL - 87 IS - 13 SP - 6607 EP - 6613 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Kramer, Friederike A1 - Halamkova, Lenka A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny A1 - Halamek, Jan T1 - Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American JF - The analyst. August 2013 Y1 - 2013 SN - 1364-5528 (E-Journal); 0003-2654 (Print) VL - Vol. 138 SP - 6251 EP - 6257 PB - Royal Society of Chemistry CY - Cambridge ER - TY - CHAP A1 - Bäcker, Matthias A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Sensor system for the monitoring of degradation processes of biodegradable biopolymers T2 - Sensoren und Messsysteme 2014 ; Beiträge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in Nürnberg. (ITG-Fachbericht ; 250) Y1 - 2014 SN - 978-3-8007-3622-5 SP - 1 EP - 4 PB - VDE-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Bäcker, Matthias A1 - Rakowski, D. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis JF - Journal of Biotechnology N2 - A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The sensors have been characterized in terms of sensitivity, linear working range and detection limit. The sensitivity evaluated from the respective peak areas was 1.47, 3.68 and 0.28 μAs/mM for the glucose, glutamate and glutamine sensor, respectively. The calibration curves were linear up to a concentration of 20 mM glucose and glutamine and up to 10 mM for glutamate. The lower detection limit amounted to be 0.05 mM for the glucose and glutamate sensor, respectively, and 0.1 mM for the glutamine sensor. Experiments in cell-culture medium have demonstrated a good correlation between the glutamate, glutamine and glucose concentrations measured with the chip-based biosensors in a differential-mode and the commercially available instrumentation. The obtained results demonstrate the feasibility of the realized microfluidic biosensor chip for monitoring of bioprocesses. Y1 - 2013 U6 - https://doi.org/10.1016/j.jbiotec.2012.03.014 SN - 0168-1656 VL - 163 IS - 4 SP - 371 EP - 376 PB - Elsevier CY - Amsterdam ER -