TY - JOUR A1 - Orzada, Stephan A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - A method to approximate maximum local SAR in multichannel transmit MR systems without transmit phase information JF - Magnetic Resonance in Medicine N2 - Purpose To calculate local specific absorption rate (SAR) correctly, both the amplitude and phase of the signal in each transmit channel have to be known. In this work, we propose a method to derive a conservative upper bound for the local SAR, with a reasonable safety margin without knowledge of the transmit phases of the channels. Methods The proposed method uses virtual observation points (VOPs). Correction factors are calculated for each set of VOPs that prevent underestimation of local SAR when the VOPs are applied with the correct amplitudes but fixed phases. Results The proposed method proved to be superior to the worst-case calculation based on the maximum eigenvalue of the VOPs. The mean overestimation for six coil setups could be reduced, whereas no underestimation of the maximum local SAR occurred. In the best investigated case, the overestimation could be reduced from a factor of 3.3 to a factor of 1.7. Conclusion The upper bound for the local SAR calculated with the proposed method allows a fast estimation of the local SAR based on power measurements in the transmit channels and facilitates SAR monitoring in systems that do not have the capability to monitor transmit phases Y1 - 2016 U6 - https://doi.org/10.1002/mrm.26398 SN - 1522-2594 VL - 78 IS - 2 SP - 805 EP - 811 PB - International Society for Magnetic Resonance in Medicine ER - TY - JOUR A1 - Chen, Bixia A1 - Schoemberg, Tobias A1 - Kraff, Oliver A1 - Dammann, Philipp A1 - Bitz, Andreas A1 - Schlamann, Marc A1 - Quick, Harald H. A1 - Ladd, Mark E. A1 - Sure, Ulrich A1 - Wrede, Karsten H. T1 - Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study JF - Magnetic Resonance Materials in Physics, Biology and Medicine N2 - Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI. Y1 - 2016 U6 - https://doi.org/10.1007/s10334-016-0548-1 SN - 1352-8661 VL - 29 IS - 3 SP - 389 EP - 398 PB - Springer CY - Berlin ER - TY - JOUR A1 - Schmidt, K. A1 - Forkmann, K. A1 - Sinke, C. A1 - Gratz, M. A1 - Bitz, Andreas A1 - Bingel, U. T1 - The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear JF - NeuroImage N2 - Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. Y1 - 2016 U6 - https://doi.org/10.1016/j.neuroimage.2016.03.026 SN - 1053-8119 VL - 134 SP - 386 EP - 395 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lagemaat, Miriam W. A1 - Breukels, Vincent A1 - Vos, Eline K. A1 - B., Adam A1 - Uden, Mark J. van A1 - Orzada, Stephan A1 - Bitz, Andreas A1 - Maas, Marnix C. A1 - Scheenen, Tom W. J. T1 - ¹H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses JF - Magnetic Resonance in Medicine N2 - Purpose To assess the feasibility of prostate ¹H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. Methods A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate ¹H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. Results Prostate ¹H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. Conclusion It is possible to perform prostate ¹H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times. Y1 - 2016 U6 - https://doi.org/10.1002/mrm.25569 SN - 1522-2594 VL - 75 IS - 3 SP - 933 EP - 945 PB - International Society for Magnetic Resonance in Medicine ER - TY - JOUR A1 - Neu, Eugen A1 - Janser, Frank A1 - Khatibi, Akbar A. A1 - Orifici, Adrian C. T1 - Automated modal parameter-based anomaly detection under varying wind excitation JF - Structural Health Monitoring N2 - Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions. Y1 - 2016 U6 - https://doi.org/10.1177/1475921716665803 SN - 1475-9217 VL - 15 IS - 6 SP - 1 EP - 20 PB - Sage CY - London ER - TY - JOUR A1 - Ngamga, Eulalie Joelle A1 - Bialonski, Stephan A1 - Marwan, Norbert A1 - Kurths, Jürgen A1 - Geier, Christian A1 - Lehnertz, Klaus T1 - Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data JF - Physics Letters A N2 - We investigate the suitability of selected measures of complexity based on recurrence quantification analysis and recurrence networks for an identification of pre-seizure states in multi-day, multi-channel, invasive electroencephalographic recordings from five epilepsy patients. We employ several statistical techniques to avoid spurious findings due to various influencing factors and due to multiple comparisons and observe precursory structures in three patients. Our findings indicate a high congruence among measures in identifying seizure precursors and emphasize the current notion of seizure generation in large-scale epileptic networks. A final judgment of the suitability for field studies, however, requires evaluation on a larger database. Y1 - 2016 U6 - https://doi.org/10.1016/j.physleta.2016.02.024 SN - 0375-9601 VL - 380 IS - 16 SP - 1419 EP - 1425 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bialonski, Stephan A1 - Caron, David A. A1 - Schloen, Julia A1 - Feudel, Ulrike A1 - Kantz, Holger A1 - Moorthi, Stefanie D. T1 - Phytoplankton dynamics in the Southern California Bight indicate a complex mixture of transport and biology JF - Journal of Plankton Research N2 - The stimulation and dominance of potentially harmful phytoplankton taxa at a given locale and time are determined by local environmental conditions as well as by transport to or from neighboring regions. The present study investigated the occurrence of common harmful algal bloom (HAB) taxa within the Southern California Bight, using cross-correlation functions to determine potential dependencies between HAB taxa and environmental factors, and potential links to algal transport via local hydrography and currents. A simulation study, in which Lagrangian particles were released, was used to assess travel times due to advection by prevailing ocean currents in the bight. Our results indicate that transport of some taxa may be an important mechanism for the expansion of their distributions into other regions, which was supported by mean travel times derived from our simulation study and other literature on ocean currents in the Southern California Bight. In other cases, however, phytoplankton dynamics were rather linked to local environmental conditions, including coastal upwelling events. Overall, our study shows that complex current patterns in the Southern California Bight may contribute significantly to the formation and expansion of HABs in addition to local environmental factors determining the spatiotemporal dynamics of phytoplankton blooms. Y1 - 2016 U6 - https://doi.org/10.1093/plankt/fbv122 SN - 1464-3774 VL - 38 IS - 4 SP - 1077 EP - 1091 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Becker, Jörg A1 - Delfmann, Patrick A1 - Dietrich, Hanns-Alexander A1 - Steinhorst, Matthias A1 - Eggert, Mathias T1 - Business Process Compliance Checking — Applying and Evaluating a Generic Pattern Matching Approach for Conceptual Models in the Financial Sector JF - Information Systems Frontiers N2 - Given the strong increase in regulatory requirements for business processes the management of business process compliance becomes a more and more regarded field in IS research. Several methods have been developed to support compliance checking of conceptual models. However, their focus on distinct modeling languages and mostly linear (i.e., predecessor-successor related) compliance rules may hinder widespread adoption and application in practice. Furthermore, hardly any of them has been evaluated in a real-world setting. We address this issue by applying a generic pattern matching approach for conceptual models to business process compliance checking in the financial sector. It consists of a model query language, a search algorithm and a corresponding modelling tool prototype. It is (1) applicable for all graph-based conceptual modeling languages and (2) for different kinds of compliance rules. Furthermore, based on an applicability check, we (3) evaluate the approach in a financial industry project setting against its relevance for decision support of audit and compliance management tasks. Y1 - 2016 U6 - https://doi.org/10.1007/s10796-014-9529-y SN - 1572-9419 VL - 18 IS - 2 SP - 359 EP - 405 PB - Springer CY - Berlin ER -