TY - JOUR A1 - Druckenmüller, Katharina A1 - Günther, Klaus A1 - Elbers, Gereon T1 - Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations JF - Science of the Total Environment N2 - Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.scitotenv.2018.02.072 SN - 0048-9697 VL - 630 SP - 536 EP - 543 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wang, Ren-Qi A1 - Druckenmüller, Katharina A1 - Elbers, Gereon A1 - Guenther, Klaus A1 - Croué, Jean-Philippe T1 - Analysis of aquatic-phase natural organic matter by optimized LDI-MS method JF - Journal of mass spectrometry N2 - The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200–1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200–15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley & Sons, Ltd. Y1 - 2014 U6 - http://dx.doi.org/10.1002/jms.3321 SN - 1096-9888 VL - 49 IS - 2 SP - 154 EP - 160 PB - Wiley CY - Bognor Regis ER -