TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz T1 - Interdisciplinary Course Smart Building Engineering: A new approach of teaching freshmen in remote teamwork project under pandemic restrictions T2 - New Perspectives in Science Education - International Conference N2 - In the context of the Corona pandemic and its impact on teaching like digital lectures and exercises a new concept especially for freshmen in demanding courses of Smart Building Engineering became necessary. As there were hardly any face-to-face events at the university, the new teaching concept should enable a good start into engineering studies under pandemic conditions anyway and should also replace the written exam at the end. The students should become active themselves in small teams instead of listening passively to a lecture broadcast online with almost no personal contact. For this purpose, a role play was developed in which the freshmen had to work out a complete solution to the realistic problem of designing, construction planning and implementing a small guesthouse. Each student of the team had to take a certain role like architect, site manager, BIM-manager, electrician and the technitian for HVAC installations. Technical specifications must be complied with, as well as documentation, time planning and cost estimate. The final project folder had to contain technical documents like circuit diagrams for electrical components, circuit diagrams for water and heating, design calculations and components lists. On the other hand construction schedule, construction implementation plan, documentation of the construction progress and minutes of meetings between the various trades had to be submitted as well. In addition to the project folder, a model of the construction project must also be created either as a handmade model or as a digital 3D-model using Computer-aided design (CAD) software. The first steps in the field of Building information modelling (BIM) had also been taken by creating a digital model of the building showing the current planning status in real time as a digital twin. This project turned out to be an excellent training of important student competencies like teamwork, communication skills, and self -organisation and also increased motivation to work on complex technical questions. The aim of giving the student a first impression on the challenges and solutions in building projects with many different technical trades and their points of view was very well achieved and should be continued in the future. KW - Freshmen KW - roleplay KW - Smart Building Engineering KW - BIM KW - remote teamwork Y1 - 2021 N1 - New Perspectives in Science Education - 10th Edition, 18-19 March 2021, Fully Virtual Conference PB - Filodiritto CY - Bologna ER - TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz T1 - Miniature urban farming plant: a complex educational “Toy” for engineering students T2 - The Future of Education 11th Edition 2021 N2 - Urban farming is an innovative and sustainable way of food production and is becoming more and more important in smart city and quarter concepts. It also enables the production of certain foods in places where they usually dare not produced, such as production of fish or shrimps in large cities far away from the coast. Unfortunately, it is not always possible to show students such concepts and systems in real life as part of courses: visits of such industry plants are sometimes not possible because of distance or are permitted by the operator for hygienic reasons. In order to give the students the opportunity of getting into contact with such an urban farming system and its complex operation, an industrial urban farming plant was set up on a significantly smaller scale. Therefore, all needed technical components like water aeriation, biological and mechanical filtration or water circulation have been replaced either by aquarium components or by self-designed parts also using a 3D-printer. Students from different courses like mechanical engineering, smart building engineering, biology, electrical engineering, automation technology and civil engineering were involved in this project. This “miniature industrial plant” was also able to start operation and has now been running for two years successfully. Due to Corona pandemic, home office and remote online lectures, the automation of this miniature plant should be brought to a higher level in future for providing a good control over the system and water quality remotely. The aim of giving the student a chance to get to know the operation of an urban farming plant was very well achieved and the students had lots of fun in “playing” and learning with it in a realistic way. KW - urban farming KW - food production KW - smart engineering KW - 3D printing KW - sustainability Y1 - 2021 N1 - FOE 2021 : The Future of Education International Conference – Fully Virtual Edition; 01.07.2021-02.07.2021; Florence, Italy ER - TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz A1 - Ulbrich, Michelle T1 - Digital planning using building information modelling and virtual reality: new approach for students’ remote practical training under lockdown conditions in the course of smart building engineering T2 - Proceedings of International Conference on Education in Mathematics, Science and Technology 2021 N2 - The worldwide Corona pandemic has severely restricted student projects in the higher semesters of engineering courses. In order not to delay the graduation, a new concept had to be developed for projects under lockdown conditions. Therefore, unused rooms at the university should be digitally recorded in order to develop a new usage concept as laboratory rooms. An inventory of the actual state of the rooms was done first by taking photos and listing up all flaws and peculiarities. After that, a digital site measuring was done with a 360° laser scanner and these recorded scans were linked to a coherent point cloud and transferred to a software for planning technical building services and supporting Building Information Modelling (BIM). In order to better illustrate the difference between the actual and target state, two virtual reality models were created for realistic demonstration. During the project, the students had to go through the entire digital planning phases. Technical specifications had to be complied with, as well as documentation, time planning and cost estimate. This project turned out to be an excellent alternative to on-site practical training under lockdown conditions and increased the students’ motivation to deal with complex technical questions. KW - smart building engineering KW - building information modelling KW - virtual reality KW - lockdown conditions KW - emote practical training Y1 - 2021 SN - 978-1-952092-17-6 N1 - International Conference on Education in Mathematics, Science and Technology 2021, April 1-4, 2021 in Antalya, Turkey SP - 118 EP - 123 PB - ISTES Organization CY - San Antonio, TX ER - TY - CHAP A1 - Mohan, Nijanthan A1 - Groß, Rolf Fritz A1 - Menzel, Karsten A1 - Theis, Fabian T1 - Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany – A Case Study T2 - WIT Transactions on The Built Environment, Vol. 205 N2 - Even though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany. KW - building information modelling KW - HVAC KW - prefabrication KW - construction KW - small and medium scaled companies Y1 - 2021 U6 - https://doi.org/10.2495/BIM210101 SN - 1743-3509 N1 - 4th International Conference on Building Information Modelling (BIM) in Design, Construction and Operations, 1–3 September 2021. Santiago de Compostela, Spain SP - 117 EP - 126 PB - WIT Press CY - Southampton ER - TY - JOUR A1 - Neumaier, Felix A1 - Weiss, Miriam A1 - Veldeman, Michael A1 - Kotliar, Konstantin A1 - Wiesmann, Martin A1 - Schulze-Steinen, Henna A1 - Höllig, Anke A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander A1 - Albanna, Walid T1 - Changes in endogenous daytime melatonin levels after aneurysmal subarachnoid hemorrhage – preliminary findings from an observational cohort study JF - Clinical Neurology and Neurosurgery N2 - Aneurysmal subarachnoid hemorrhage (aSAH) is associated with early and delayed brain injury due to several underlying and interrelated processes, which include inflammation, oxidative stress, endothelial, and neuronal apoptosis. Treatment with melatonin, a cytoprotective neurohormone with anti-inflammatory, anti-oxidant and anti-apoptotic effects, has been shown to attenuate early brain injury (EBI) and to prevent delayed cerebral vasospasm in experimental aSAH models. Less is known about the role of endogenous melatonin for aSAH outcome and how its production is altered by the pathophysiological cascades initiated during EBI. In the present observational study, we analyzed changes in melatonin levels during the first three weeks after aSAH. KW - constructive alignment KW - examination KW - long-term retention KW - multimodal KW - practical learning Y1 - 2021 U6 - https://doi.org/10.1016/j.clineuro.2021.106870 SN - 0303-8467 VL - 208 IS - Article No.: 106870 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kuerten, David A1 - Kotliar, Konstantin A1 - Fuest, Matthias A1 - Walter, Peter A1 - Hollstein, Muriel A1 - Plange, Niklas ED - Neri, Piergiorgio T1 - Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study JF - International Ophthalmology N2 - Purpose Vascular risk factors and ocular perfusion are heatedly discussed in the pathogenesis of glaucoma. The retinal vessel analyzer (RVA, IMEDOS Systems, Germany) allows noninvasive measurement of retinal vessel regulation. Significant differences especially in the veins between healthy subjects and patients suffering from glaucoma were previously reported. In this pilot-study we investigated if localized vascular regulation is altered in glaucoma patients with altitudinal visual field defect asymmetry. Methods 15 eyes of 12 glaucoma patients with advanced altitudinal visual field defect asymmetry were included. The mean defect was calculated for each hemisphere separately (-20.99 ± 10.49 pro- found hemispheric visual field defect vs -7.36 ± 3.97 dB less profound hemisphere). After pupil dilation, RVA measurements of retinal arteries and veins were conducted using the standard protocol. The superior and inferior retinal vessel reactivity were measured consecutively in each eye. Results Significant differences were recorded in venous vessel constriction after flicker light stimulation and overall amplitude of the reaction (p \ 0.04 and p \ 0.02 respectively) in-between the hemispheres spheres. Vessel reaction was higher in the hemisphere corresponding to the more advanced visual field defect. Arterial diameters reacted similarly, failing to reach statistical significance. Conclusion Localized retinal vessel regulation is significantly altered in glaucoma patients with asymmetri altitudinal visual field defects. Veins supplying the hemisphere concordant to a less profound visual field defect show diminished diameter changes. Vascular dysregulation might be particularly important in early glaucoma stages prior to a significant visual field defect. KW - Glaucoma KW - Visual field asymmetry KW - Ocular blood flow KW - RVA KW - Vascular response Y1 - 2021 SN - 1573-2630 U6 - https://doi.org/10.1007/s10792-021-01876-0 VL - 41 IS - 41 SP - 3109 EP - 3119 PB - Springer CY - Berlin ER - TY - JOUR A1 - Albanna, Walid A1 - Conzen, Catharina A1 - Weiss, Miriam A1 - Seyfried, Katharina A1 - Kotliar, Konstantin A1 - Schmidt, Tobias Philip A1 - Kuerten, David A1 - Hescheler, Jürgen A1 - Bruecken, Anne A1 - Schmidt-Trucksäss, Arno A1 - Neumaier, Felix A1 - Wiesmann, Martin A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander T1 - Non-invasive assessment of neurovascular coupling after aneurysmal subarachnoid hemorrhage: a prospective observational trial using retinal vessel analysis JF - Frontiers in Neurology N2 - Delayed cerebral ischemia (DCI) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH) and can lead to infarction and poor clinical outcome. The underlying mechanisms are still incompletely understood, but animal models indicate that vasoactive metabolites and inflammatory cytokines produced within the subarachnoid space may progressively impair and partially invert neurovascular coupling (NVC) in the brain. Because cerebral and retinal microvasculature are governed by comparable regulatory mechanisms and may be connected by perivascular pathways, retinal vascular changes are increasingly recognized as a potential surrogate for altered NVC in the brain. Here, we used non-invasive retinal vessel analysis (RVA) to assess microvascular function in aSAH patients at different times after the ictus. Y1 - 2021 U6 - https://doi.org/10.3389/fneur.2021.690183 SN - 1664-2295 VL - 12 IS - 12 SP - 1 EP - 15 ER - TY - CHAP A1 - Kotliar, Konstantin ED - Pallikaris, I. ED - Tsilimbaris, M. K. ED - Dastiridou, A. I. T1 - Ocular rigidity: clinical approach T2 - Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye N2 - The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications. KW - Coefficient of ocular rigidity KW - Eyeball KW - Corneo-scleral shell KW - Pressure-volume relationship KW - Differential tonometry Y1 - 2021 SN - 978-3-030-64422-2 U6 - https://doi.org/10.1007/978-3-030-64422-2_2 SP - 15 EP - 43 PB - Springer CY - Cham ER - TY - JOUR A1 - Neumaier, Felix A1 - Kotliar, Konstantin A1 - Haeren, Roel Hubert Louis A1 - Temel, Yasin A1 - Lüke, Jan Niklas A1 - Seyam, Osama A1 - Lindauer, Ute A1 - Clusmann, Hans A1 - Hescheler, Jürgen A1 - Schubert, Gerrit Alexander A1 - Schneider, Toni A1 - Albanna, Walid T1 - Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice—An in- vivo Evaluation Using Retinal Vessel Analysis (RVA) JF - Frontiers in Neurology Y1 - 2021 U6 - https://doi.org/10.3389/fneur.2021.659890 VL - 12 SP - 1 EP - 11 PB - Frontiers ER - TY - CHAP A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas T1 - Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC T2 - Proceedings of the 1st UNITED – Southeast Asia Automotive Interest Group (SAIG) International Conference N2 - In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device. KW - electro mobility KW - fuel cell KW - internal combustion engine KW - electrically driven compressors Y1 - 2021 SN - 978-3-902103-94-9 N1 - 1st UNITED-SAIG International Conference, 21-22 APR 2021, Chulalongkorn University, Thailand SP - 45 EP - 46 PB - FH Joanneum CY - Graz ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Orzada, Stephan A1 - Flöser, Martina A1 - Rietsch, Stefan H. G. A1 - Quick, Harald H. A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T JF - NMR in Biomedicine N2 - The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit ele- ments. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual obser- vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the devia- tion from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe- cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homoge- neous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study. KW - body imaging at UHF MRI KW - integrated transmit coil arrays KW - VOP compression Y1 - 2021 U6 - https://doi.org/10.1002/nbm.4515 SN - 0952-3480 (ISSN) SN - 1099-1492 (eISSN) VL - 34 IS - 7 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Wild, Dominik A1 - Czupalla, Markus A1 - Förstner, Roger T1 - Modeling, prediction and test of additive manufactured integral structures with embedded lattice and phase change material applying Infused Thermal Solutions (ITS) T2 - ICES104: Advances in Thermal Control Technology N2 - Infused Thermal Solutions (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, but with phase change material (PCM) for thermal energy storage (TES), in combination with lattice - both embedded in additive manufactured functional structures. In this ITS follow-on paper a thermal model approach and associated predictions are presented, related on the ITS functional breadboards developed at FH Aachen. Predictive TES by PCM is provided by a specially developed ITS PCM subroutine, which is applicable in ESATAN. The subroutine is based on the latent heat storage (LHS) method to numerically embed thermo-physical PCM behavior. Furthermore, a modeling approach is introduced to numerically consider the virtual PCM/lattice nodes within the macro-encapsulated PCM voids of the double wall ITS design. Related on these virtual nodes, in-plane and out-of-plane conductive links are defined. The recent additive manufactured ITS breadboard series are thermally cycled in the thermal vacuum chamber, both with and without embedded PCM. Related on breadboard hardware tests, measurement results are compared with predictions and are subsequently correlated. The results of specific simulations and measurements are presented. Recent predictive results of star tracker analyses are also presented in ICES-2021-106, based on this ITS PCM subroutine. KW - latent heat KW - thermo-physical KW - lattice KW - ESATAN KW - subroutine KW - PCM KW - ITS Y1 - 2021 N1 - 50th International Conference on Environmental Systems, 12-15 July 2021, held virtually PB - Texas Tech University CY - Lubbock, Tex. ER - TY - CHAP A1 - Kohlberger, David-Sharif A1 - Wild, Dominik A1 - Kasper, Stefan A1 - Czupalla, Markus T1 - Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method T2 - ICES202: Satellite, Payload, and Instrument Thermal Control N2 - Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated. KW - passive thermal control KW - PCM KW - star tracker KW - Infused Thermal Solutions KW - GEO KW - LEO Y1 - 2021 N1 - 50th International Conference on Environmental Systems, 12-15 July 2021, held virtually PB - Texas Tech University CY - Lubbock, Tex. ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Kurulgan demirci, Eylem A1 - Fırat, Ipek Seda A1 - Oflaz, Hakan A1 - Artmann, Gerhard T1 - Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers JF - SHOCK KW - Septic cardiomyopathy KW - LPS KW - cardiomyocyte biomechanics KW - CellDrum KW - actin cytoskeleton Y1 - 2021 U6 - https://doi.org/10.1097/SHK.0000000000001845 SN - 1540-0514 PB - Wolters Kluwer CY - Köln ER - TY - CHAP A1 - El Moussaoui, Noureddine A1 - Kassmi, Khalil A1 - Alexopoulos, Spiros A1 - Schwarzer, Klemens A1 - Chayeb, Hamid A1 - Bachiri, Najib T1 - Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy T2 - Materialstoday: Proceedings N2 - In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10%, and in the quantity of water produced by a factor of 3. Y1 - 2021 U6 - https://doi.org/10.1016/j.matpr.2021.03.115 SN - 2214-7853 N1 - The Fourth edition of the International Conference on Materials & Environmental Science (ICMES 2020), virtual conference, November 18-28, 2020, Morocco VL - 45 IS - 8 SP - 7653 EP - 7660 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gaigall, Daniel T1 - Test for Changes in the Modeled Solvency Capital Requirement of an Internal Risk Model JF - ASTIN Bulletin N2 - In the context of the Solvency II directive, the operation of an internal risk model is a possible way for risk assessment and for the determination of the solvency capital requirement of an insurance company in the European Union. A Monte Carlo procedure is customary to generate a model output. To be compliant with the directive, validation of the internal risk model is conducted on the basis of the model output. For this purpose, we suggest a new test for checking whether there is a significant change in the modeled solvency capital requirement. Asymptotic properties of the test statistic are investigated and a bootstrap approximation is justified. A simulation study investigates the performance of the test in the finite sample case and confirms the theoretical results. The internal risk model and the application of the test is illustrated in a simplified example. The method has more general usage for inference of a broad class of law-invariant and coherent risk measures on the basis of a paired sample. KW - Bootstrap KW - Empirical process KW - Functional Delta Method KW - Hadamard differentiability KW - Paired sample Y1 - 2021 U6 - https://doi.org/10.1017/asb.2021.20 SN - 1783-1350 VL - 51 IS - 3 SP - 813 EP - 837 PB - Cambridge Univ. Press CY - Cambridge ER - TY - JOUR A1 - Dickhoff, Jens A1 - Horikawa, Atsushi A1 - Funke, Harald T1 - Hydrogen Combustion - new DLE Combustor Addresses NOx Emissions and Flashback JF - Turbomachinery international : the global journal of energy equipment Y1 - 2021 SN - 2767-2328 SN - 0149-4147 VL - 62 IS - 4 SP - 26 EP - 27 PB - MJH Life Sciences CY - Cranbury ER - TY - JOUR A1 - Gorzalka, Philip A1 - Schmiedt, Jacob Estevam A1 - Schorn, Christian T1 - Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery JF - Buildings N2 - An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment. KW - Modelica KW - heat transfer coefficient KW - heat demand KW - building energy modelling KW - building energy simulation Y1 - 2021 U6 - https://doi.org/10.3390/buildings11090380 SN - 2075-5309 N1 - This article belongs to the Special Issue "Application of Computer Technology in Buildings" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Alexyuk, Madina A1 - Bogoyavlenskiy, Andrey A1 - Alexyuk, Pavel A1 - Moldakhanov, Yergali A1 - Berezin, Vladimir A1 - Digel, Ilya T1 - Epipelagic microbiome of the Small Aral Sea: Metagenomic structure and ecological diversity JF - MicrobiologyOpen N2 - Microbial diversity studies regarding the aquatic communities that experienced or are experiencing environmental problems are essential for the comprehension of the remediation dynamics. In this pilot study, we present data on the phylogenetic and ecological structure of microorganisms from epipelagic water samples collected in the Small Aral Sea (SAS). The raw data were generated by massive parallel sequencing using the shotgun approach. As expected, most of the identified DNA sequences belonged to Terrabacteria and Actinobacteria (40% and 37% of the total reads, respectively). The occurrence of Deinococcus-Thermus, Armatimonadetes, Chloroflexi in the epipelagic SAS waters was less anticipated. Surprising was also the detection of sequences, which are characteristic for strict anaerobes—Ignavibacteria, hydrogen-oxidizing bacteria, and archaeal methanogenic species. We suppose that the observed very broad range of phylogenetic and ecological features displayed by the SAS reads demonstrates a more intensive mixing of water masses originating from diverse ecological niches of the Aral-Syr Darya River basin than presumed before. KW - ecological structure KW - metagenomics KW - microbial diversity KW - shotgun sequencing KW - Small Aral Sea Y1 - 2021 U6 - https://doi.org/10.1002/mbo3.1142 SN - 2045-8827 N1 - Corresponding author: Ilya Digel VL - 10 IS - 1 SP - 1 EP - 10 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Diekmann, Julian A1 - Eggert, Mathias T1 - Is a Progressive Web App an Alternative for Native App Development? T2 - 3. Wissenschaftsforum: Digitale Transformation (WiFo21) (Lecture Notes in Informatics ; P-319) N2 - The existence of several mobile operating systems, such as Android and iOS, is a challenge for developers because the individual platforms are not compatible with each other and require separate app developments. For this reason, cross-platform approaches have become popular but lack in cloning the native behavior of the different operating systems. Out of the plenty cross-platform approaches, the progressive web app (PWA) approach is perceived as promising but needs further investigation. Therefore, the paper at hand aims at investigating whether PWAs are a suitable alternative for native apps by developing a PWA clone of an existing app. Two surveys are conducted in which potential users test and evaluate the PWA prototype with regard to its usability. The survey results indicate that PWAs have great potential, but cannot be treated as a general alternative to native apps. For guiding developers when and how to use PWAs, four design guidelines for the development of PWA-based apps are derived based on the results. KW - Progressive Web App KW - PWA KW - Cross-platform KW - Evaluation KW - Mobile web Y1 - 2021 SN - 978-3-88579-713-5 SP - 35 EP - 48 PB - Gesellschaft für Informatik CY - Darmstadt ER - TY - CHAP A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Slabu, Ioana T1 - Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating T2 - Magnetic nanoparticles in human health and medicine Y1 - 2021 SN - 978-1-119-75467-1 SP - 327 EP - 354 PB - Wiley-Blackwell CY - Hoboken, New Jeersey ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Sherelkhan, Dinara K. A1 - Jussupova, Dariya B. A1 - Altynbay, Nazym P. T1 - Low-rank coal as a source of humic substances for soil amendment and fertility management JF - Agriculture N2 - Humic substances (HS), as important environmental components, are essential to soil health and agricultural sustainability. The usage of low-rank coal (LRC) for energy generation has declined considerably due to the growing popularity of renewable energy sources and gas. However, their potential as soil amendment aimed to maintain soil quality and productivity deserves more recognition. LRC, a highly heterogeneous material in nature, contains large quantities of HS and may effectively help to restore the physicochemical, biological, and ecological functionality of soil. Multiple emerging studies support the view that LRC and its derivatives can positively impact the soil microclimate, nutrient status, and organic matter turnover. Moreover, the phytotoxic effects of some pollutants can be reduced by subsequent LRC application. Broad geographical availability, relatively low cost, and good technical applicability of LRC offer the advantage of easy fulfilling soil amendment and conditioner requirements worldwide. This review analyzes and emphasizes the potential of LRC and its numerous forms/combinations for soil amelioration and crop production. A great benefit would be a systematic investment strategy implicating safe utilization and long-term application of LRC for sustainable agricultural production. KW - soil remediation KW - crop yield KW - soil health KW - soil amendment KW - low-rank coal Y1 - 2021 U6 - https://doi.org/10.3390/agriculture11121261 SN - 2077-0472 N1 - This article belongs to the Special Issue "From Waste to Fertilizer in Sustainable Agriculture" VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - CHAP A1 - Butenweg, Christoph ED - Kuzmanović, Vladan ED - Ignjatović, Ivan T1 - Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies T2 - Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions N2 - Nowadays modern high-performance buildings and facilities are equipped with monitoring systems and sensors to control building characteristics like energy consumption, temperature pattern and structural safety. The visualization and interpretation of sensor data is typically based on simple spreadsheets and non-standardized user-oriented solutions, which makes it difficult for building owners, facility managers and decision-makers to evaluate and understand the data. The solution of this problem in the future are integrated BIM-Sensor approaches which allow the generation of BIM models incorporating all relevant information of monitoring systems. These approaches support both the dynamic visualization of key structural performance parameters, the effective long-term management of sensor data based on BIM and provide a user-friendly interface to communicate with various stakeholders. A major benefit for the end user is the use of the BIM software architecture, which is the future standard anyway. In the following, the application of the integrated BIM-Sensor approach is illustrated for a typical industrial facility as a part of an early warning and rapid response system for earthquake events currently developed in the research project “ROBUST” with financial support by the German Federal Ministry for Economic Affairs and Energy (BMWI). Y1 - 2021 N1 - Civil Engineering 2021 – Achievements and Visions, University of Belgrade, October 25 – 26, 2021 Belgrade, Serbia SP - 67 EP - 75 PB - University of Belgrade CY - Belgrade ER - TY - JOUR A1 - Seefeldt, Patric A1 - Dachwald, Bernd T1 - Temperature increase on folded solar sail membranes JF - Advances in Space Research Y1 - 2021 U6 - https://doi.org/10.1016/j.asr.2020.09.026 SN - 0273-1177 VL - 67 IS - 9 SP - 2688 EP - 2695 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Schalko, Isabella A1 - Friedrich, Heide A1 - Abad, Jorge D. A1 - Bung, Daniel Bernhard A1 - Donchyts, Gennadii A1 - Felder, Stefan A1 - Ferreira, Rui M. L. A1 - Hohermuth, Benjamin A1 - Kramer, Matthias A1 - Li, Danxun A1 - Mendes, Luis A1 - Moreno-Rodenas, Antonio A1 - Nones, Michael A1 - Paron, Paolo A1 - Ruiz-Villanueva, Virginia A1 - Wang, Ruo-Qian A1 - Franca, Mario J. T1 - Pathways towards democratization of hydro-environment observations and data JF - Iahr White Paper Series Y1 - 2021 IS - 1 SP - 1 EP - 9 PB - International Association for Hydro-Environment Engineering and Research (IAHR) ER - TY - GEN A1 - Mayntz, Joscha A1 - Keimer, Jona A1 - Tegtmeyer, Philipp A1 - Dahmann, Peter A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Aerodynamic Investigation on Efficient Inflight Transition of a Propeller from Propulsion to Regeneration Mode T2 - AIAA SCITECH 2022 Forum N2 - This paper discusses a new way of inflight power regeneration for electric or hybrid-electric driven general aviation aircraft with one powertrain for both configurations. Three different approaches for the shift from propulsion to regeneration mode are analyzed. Numerical cal-culation and wind tunnel results are compared and show the highest regeneration potential for the "Windmill" approach, where the propeller blades are flipped, and rotation is reversed. A combination of all regeneration approaches for a realistic flight mission is discussed. Y1 - 2021 U6 - https://doi.org/10.2514/6.2022-0546 N1 - AIAA SCITECH 2022 Forum, January 3-7, 2022, San Diego, CA & Virtual PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Dey, Thomas A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Frauenrath, Tobias A1 - Reke, Michael A1 - Schiffer, Stefan ED - Makedon, Fillia T1 - CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom T2 - PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference N2 - In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway. KW - embedded hardware KW - sensor networks KW - information systems KW - education KW - do-it-yourself Y1 - 2021 SN - 9781450387927 U6 - https://doi.org/10.1145/3453892.3462697 N1 - PETRA '21: The 14th PErvasive Technologies Related to Assistive Environments Conference Corfu Greece 29 June 2021- 2 July 2021 SP - 292 EP - 299 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - German, Laura A1 - Mikucki, Jill A. A1 - Welch, Susan A. A1 - Welch, Kathleen A. A1 - Lutton, Anthony A1 - Dachwald, Bernd A1 - Kowalski, Julia A1 - Heinen, Dirk A1 - Feldmann, Marco A1 - Francke, Gero A1 - Espe, Clemens A1 - Lyons, W. Berry T1 - Validation of sampling antarctic subglacial hypersaline waters with an electrothermal ice melting probe (IceMole) for environmental analytical geochemistry JF - International Journal of Environmental Analytical Chemistry N2 - Geochemical characterisation of hypersaline waters is difficult as high concentrations of salts hinder the analysis of constituents at low concentrations, such as trace metals, and the collection of samples for trace metal analysis in natural waters can be easily contaminated. This is particularly the case if samples are collected by non-conventional techniques such as those required for aquatic subglacial environments. In this paper we present the first analysis of a subglacial brine from Taylor Valley, (~ 78°S), Antarctica for the trace metals: Ba, Co, Mo, Rb, Sr, V, and U. Samples were collected englacially using an electrothermal melting probe called the IceMole. This probe uses differential heating of a copper head as well as the probe’s sidewalls and an ice screw at the melting head to move through glacier ice. Detailed blanks, meltwater, and subglacial brine samples were collected to evaluate the impact of the IceMole and the borehole pump, the melting and collection process, filtration, and storage on the geochemistry of the samples collected by this device. Comparisons between melt water profiles through the glacier ice and blank analysis, with published studies on ice geochemistry, suggest the potential for minor contributions of some species Rb, As, Co, Mn, Ni, NH4+, and NO2−+NO3− from the IceMole. The ability to conduct detailed chemical analyses of subglacial fluids collected with melting probes is critical for the future exploration of the hundreds of deep subglacial lakes in Antarctica. Y1 - 2021 U6 - https://doi.org/10.1080/03067319.2019.1704750 SN - 0306-7319 VL - 101 IS - 15 SP - 2654 EP - 2667 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Chajan, Eduard A1 - Schulte-Tigges, Joschua A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Matheis, Dominik A1 - Walter, Thomas T1 - GPU based model-predictive path control for self-driving vehicles T2 - IEEE Intelligent Vehicles Symposium (IV) N2 - One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments. KW - Heuristic algorithms KW - Computational modeling KW - model-predictive control KW - GPU KW - autonomous driving Y1 - 2021 SN - 978-1-7281-5394-0 U6 - https://doi.org/10.1109/IV48863.2021.9575619 N1 - 2021 IEEE Intelligent Vehicles Symposium (IV), July 11-17, 2021. Nagoya, Japan SP - 1243 EP - 1248 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Köhler, Klemens A1 - Röpke, René A1 - Wolf, Martin R. T1 - Through a mirror darkly – On the obscurity of teaching goals in game-based learning in IT security JF - ISAGA 2019: Simulation Gaming Through Times and Disciplines N2 - Teachers and instructors use very specific language communicating teaching goals. The most widely used frameworks of common reference are the Bloom’s Taxonomy and the Revised Bloom’s Taxonomy. The latter provides distinction of 209 different teaching goals which are connected to methods. In Competence Developing Games (CDGs - serious games to convey knowledge) and in IT security education, a two- or three level typology exists, reducing possible learning outcomes to awareness, training, and education. This study explores whether this much simpler framework succeeds in achieving the same range of learning outcomes. Method wise a keyword analysis was conducted. The results were threefold: 1. The words used to describe teaching goals in CDGs on IT security education do not reflect the whole range of learning outcomes. 2. The word choice is nevertheless different from common language, indicating an intentional use of language. 3. IT security CDGs use different sets of terms to describe learning outcomes, depending on whether they are awareness, training, or education games. The interpretation of the findings is that the reduction to just three types of CDGs reduces the capacity to communicate and think about learning outcomes and consequently reduces the outcomes that are intentionally achieved. KW - IT security education KW - Competence Developing Games KW - Game-based learning KW - Keyword analysis KW - Bloom’s Taxonomy Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-72132-9_6 N1 - ISAGA 2019 - International Simulation and Gaming Association Conference. 26-30 August 2019. Warsaw, Poland. Part of the Lecture Notes in Computer Science book series (LNCS, volume 11988) SP - 61 EP - 73 PB - Springer CY - Cham ER - TY - CHAP A1 - Ferrein, Alexander A1 - Meeßen, Marcus A1 - Limpert, Nicolas A1 - Schiffer, Stefan ED - Lepuschitz, Wilfried T1 - Compiling ROS schooling curricula via contentual taxonomies T2 - Robotics in Education N2 - The Robot Operating System (ROS) is the current de-facto standard in robot middlewares. The steadily increasing size of the user base results in a greater demand for training as well. User groups range from students in academia to industry professionals with a broad spectrum of developers in between. To deliver high quality training and education to any of these audiences, educators need to tailor individual curricula for any such training. In this paper, we present an approach to ease compiling curricula for ROS trainings based on a taxonomy of the teaching contents. The instructor can select a set of dedicated learning units and the system will automatically compile the teaching material based on the dependencies of the units selected and a set of parameters for a particular training. We walk through an example training to illustrate our work. Y1 - 2021 SN - 978-3-030-67411-3 U6 - https://doi.org/10.1007/978-3-030-67411-3_5 N1 - RiE: International Conference on Robotics in Education (RiE); Advances in Intelligent Systems and Computing book series (AISC, volume 1316) SP - 49 EP - 60 PB - Springer CY - Cham ER - TY - GEN A1 - Jung, Alexander A1 - Müller, Wolfram A1 - Staat, Manfred T1 - Corrigendum to “Wind and fairness in ski jumping: A computer modelling analysis” [J. Biomech. 75 (2018) 147–153] T2 - Journal of Biomechanics Y1 - 2021 U6 - https://doi.org/10.1016/j.jbiomech.2021.110690 SN - 0021-9290 N1 - Refers to: Alexander Jung, Wolfram Müller, Manfred Staat: Wind and fairness in ski jumping: A computer modelling analysis. Journal of Biomechanics, Volume 75. 25 June 2018. Pages 147-153. https://doi.org/10.1016/j.jbiomech.2018.05.001 VL - 128 IS - Article number: 110690 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jablonski, Melanie A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Detection of plant virus particles with a capacitive field-effect sensor JF - Analytical and Bioanalytical Chemistry N2 - Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied. KW - Plant virus KW - Capacitive field-effect sensor KW - Tobacco mosaic virus (TMV) KW - Label-free detection KW - Zeta potential Y1 - 2021 U6 - https://doi.org/10.1007/s00216-021-03448-8 SN - 1618-2650 N1 - Corresponding authors: Arshak Poghossian & Michael J. Schöning VL - 413 SP - 5669 EP - 5678 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Recent progress in silicon-based biologically sensitive field-effect devices JF - Current Opinion in Electrochemistry N2 - Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor’s recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential. Y1 - 2021 U6 - https://doi.org/10.1016/j.coelec.2021.100811 SN - 2451-9103 IS - Article number: 100811 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Chico Caminos, Ricardo Alexander A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating Solar Power T2 - Earth systems and environmental sciences N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Concentrating solar power KW - Fresnel power plant KW - Gas turbine Y1 - 2021 SN - 978-0-12-409548-9 U6 - https://doi.org/10.1016/B978-0-12-819727-1.00089-3 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Achtsnicht, Stefan A1 - Nambipareechee, Mrinal Murali A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection JF - Sensors N2 - Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible. KW - colorization KW - multiplex detection KW - frequency mixing magnetic detection KW - magnetic nanoparticles Y1 - 2021 U6 - https://doi.org/10.3390/s21175859 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advanced Nanomaterial-Based Sensors for Biomedical Applications" VL - 21 IS - 17 PB - MDPI CY - Basel ER - TY - CHAP A1 - Schulte, Maximilian A1 - Eggert, Mathias T1 - Predicting hourly bitcoin prices based on long short-term memory neural networks T2 - Proceedings of the International Conference on Wirtschaftsinformatik (WI) 2021 N2 - Bitcoin is a cryptocurrency and is considered a high-risk asset class whose price changes are difficult to predict. Current research focusses on daily price movements with a limited number of predictors. The paper at hand aims at identifying measurable indicators for Bitcoin price movements and the development of a suitable forecasting model for hourly changes. The paper provides three research contributions. First, a set of significant indicators for predicting the Bitcoin price is identified. Second, the results of a trained Long Short-term Memory (LSTM) neural network that predicts price changes on an hourly basis is presented and compared with other algorithms. Third, the results foster discussions of the applicability of neural nets for stock price predictions. In total, 47 input features for a period of over 10 months could be retrieved to train a neural net that predicts the Bitcoin price movements with an error rate of 3.52 %. Y1 - 2021 N1 - 16th International Conference on Wirtschaftsinformatik, March 2021, Essen, Germany ER - TY - JOUR A1 - Ball, Christopher Stephen A1 - Vögele, Stefan A1 - Grajewski, Matthias A1 - Kuckshinrichs, Wilhelm T1 - E-mobility from a multi-actor point of view: Uncertainties and their impacts JF - Technological Forecasting and Social Change Y1 - 2021 SN - 0040-1625 U6 - https://doi.org/10.1016/j.techfore.2021.120925 VL - 170 IS - Art. 120925 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jablonski, Melanie A1 - Poghossian, Arshak A1 - Severin, Robin A1 - Keusgen, Michael A1 - Wege, Christian A1 - Schöning, Michael Josef T1 - Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles JF - Micromachines N2 - Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles. KW - capacitive field-effect sensor KW - plant virus detection KW - tobacco mosaic virus (TMV) KW - TMV adsorption KW - Ta₂O₅ gate Y1 - 2021 U6 - https://doi.org/10.3390/mi12010057 VL - 12 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harzheim, Thomas A1 - Mühmel, Marc A1 - Heuermann, Holger T1 - A SFCW harmonic radar system for maritime search and rescue using passive and active tags JF - International Journal of Microwave and Wireless Technologies N2 - This paper introduces a new maritime search and rescue system based on S-band illumination harmonic radar (HR). Passive and active tags have been developed and tested while attached to life jackets and a small boat. In this demonstration test carried out on the Baltic Sea, the system was able to detect and range the active tags up to a distance of 5800 m using an illumination signal transmit-power of 100 W. Special attention is given to the development, performance, and conceptual differences between passive and active tags used in the system. Guidelines for achieving a high HR dynamic range, including a system components description, are given and a comparison with other HR systems is performed. System integration with a commercial maritime X-band navigation radar is shown to demonstrate a solution for rapid search and rescue response and quick localization. KW - Radar KW - microwave measurements KW - harmonic radar KW - harmonic radar tags KW - nonlinear VNA measurements Y1 - 2021 U6 - https://doi.org/10.1017/S1759078721000520 VL - 13 IS - Special Issue 7 SP - 691 EP - 707 PB - Cambridge University Press CY - Cambridge ER - TY - THES A1 - Jung, Alexander T1 - Electromechanical modelling and simulation of hiPSC-derived cardiac cell cultures Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?https://nbn-resolving.org/urn:nbn:de:hbz:464-20210624-134942-7 SN - 978-3-9821811-1-0 N1 - Dissertation, Universität Duisburg-Essen, 2021 PB - Universität Duisburg-Essen ER - TY - JOUR A1 - Hackl, Michael A1 - Buess, Eduard A1 - Kammerlohr, Sandra A1 - Nacov, Julia A1 - Staat, Manfred A1 - Leschinger, Tim A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model JF - The american journal of sports medicine N2 - Background: Additional stabilization of the “comma sign” in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign–directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome. Y1 - 2021 U6 - https://doi.org/10.1177/03635465211031506 SN - 1552-3365 SN - 0363-5465 VL - 49 IS - 12 SP - 3212 EP - 3217 PB - Sage CY - London ER - TY - JOUR A1 - Poghossian, Arshak A1 - Welden, Rene A1 - Buniatyan, Vahe V. A1 - Schöning, Michael Josef T1 - An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling JF - Sensors N2 - The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed. KW - equivalent circuit KW - multianalyte detection KW - control gate KW - on-chip integrated addressable EISCAP sensors KW - capacitive field-effect sensor Y1 - 2021 U6 - https://doi.org/10.3390/s21186161 SN - 1424-8220 N1 - This article belongs to the Special Issue "Field-Effect Sensors: From pH Sensing to Biosensing" VL - 21 IS - 18 SP - 17 PB - MDPI CY - Basel ER - TY - CHAP A1 - Heuermann, Holger A1 - Harzheim, Thomas A1 - Mühmel, Marc T1 - A maritime harmonic radar search and rescue system using passive and active tags T2 - 2020 17th European Radar Conference (EuRAD) N2 - This article introduces a new maritime search and rescue system based on S-band illumination harmonic radar (HR). Passive and active tags have been developed and tested attached to life jackets and a rescue boat. This system was able to detect and range the active tags up to a range of 5800 m in tests on the Baltic Sea with an antenna input power of only 100 W. All electronic GHz components of the system, excluding the S-band power amplifier, were custom developed for this purpose. Special attention is given to the performance and conceptual differences between passive and active tags used in the system and integration with a maritime X-band navigation radar is demonstrated. KW - Harmonic Radar KW - Rescue System KW - Frequency Doubler KW - Transponder KW - Tag Y1 - 2021 SN - 978-2-87487-061-3 U6 - https://doi.org/10.1109/EuRAD48048.2021.00030 N1 - 17th European Radar Conference, 13th - 15th January 2021, Utrecht, Netherlands SP - 73 EP - 76 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Grieger, Niklas A1 - Schwabedal, Justus T. C. A1 - Wendel, Stefanie A1 - Ritze, Yvonne A1 - Bialonski, Stephan T1 - Automated scoring of pre-REM sleep in mice with deep learning JF - Scientific Reports N2 - Reliable automation of the labor-intensive manual task of scoring animal sleep can facilitate the analysis of long-term sleep studies. In recent years, deep-learning-based systems, which learn optimal features from the data, increased scoring accuracies for the classical sleep stages of Wake, REM, and Non-REM. Meanwhile, it has been recognized that the statistics of transitional stages such as pre-REM, found between Non-REM and REM, may hold additional insight into the physiology of sleep and are now under vivid investigation. We propose a classification system based on a simple neural network architecture that scores the classical stages as well as pre-REM sleep in mice. When restricted to the classical stages, the optimized network showed state-of-the-art classification performance with an out-of-sample F1 score of 0.95 in male C57BL/6J mice. When unrestricted, the network showed lower F1 scores on pre-REM (0.5) compared to the classical stages. The result is comparable to previous attempts to score transitional stages in other species such as transition sleep in rats or N1 sleep in humans. Nevertheless, we observed that the sequence of predictions including pre-REM typically transitioned from Non-REM to REM reflecting sleep dynamics observed by human scorers. Our findings provide further evidence for the difficulty of scoring transitional sleep stages, likely because such stages of sleep are under-represented in typical data sets or show large inter-scorer variability. We further provide our source code and an online platform to run predictions with our trained network. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-91286-0 SN - 2045-2322 N1 - Corresponding author: Stephan Bialonski VL - 11 IS - Art. 12245 PB - Springer Nature CY - London ER - TY - CHAP A1 - Bornheim, Tobias A1 - Grieger, Niklas A1 - Bialonski, Stephan T1 - FHAC at GermEval 2021: Identifying German toxic, engaging, and fact-claiming comments with ensemble learning T2 - Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021 Y1 - 2021 U6 - https://doi.org/10.48415/2021/fhw5-x128 N1 - KONVENS (Konferenz zur Verarbeitung natürlicher Sprache/Conference on Natural Language Processing) 2021, 6. - 9. September 2021, Düsseldorf SP - 105 EP - 111 PB - Heinrich Heine University CY - Düsseldorf ER - TY - JOUR A1 - Staat, Manfred T1 - An extension strain type Mohr–Coulomb criterion JF - Rock mechanics and rock engineering N2 - Extension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion. Y1 - 2021 U6 - https://doi.org/10.1007/s00603-021-02608-7 SN - 1434-453X N1 - Corresponding author: Manfred Staat VL - 54 IS - 12 SP - 6207 EP - 6233 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Karschuck, Tobias A1 - Kaulen, Corinna A1 - Poghossian, Arshak A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Gold nanoparticle-modified capacitive field-effect sensors: Studying the surface density of nanoparticles and coupling of charged polyelectrolyte macromolecules JF - Electrochemical Science Advances N2 - The coupling of ligand-stabilized gold nanoparticles with field-effect devices offers new possibilities for label-free biosensing. In this work, we study the immobilization of aminooctanethiol-stabilized gold nanoparticles (AuAOTs) on the silicon dioxide surface of a capacitive field-effect sensor. The terminal amino group of the AuAOT is well suited for the functionalization with biomolecules. The attachment of the positively-charged AuAOTs on a capacitive field-effect sensor was detected by direct electrical readout using capacitance-voltage and constant capacitance measurements. With a higher particle density on the sensor surface, the measured signal change was correspondingly more pronounced. The results demonstrate the ability of capacitive field-effect sensors for the non-destructive quantitative validation of nanoparticle immobilization. In addition, the electrostatic binding of the polyanion polystyrene sulfonate to the AuAOT-modified sensor surface was studied as a model system for the label-free detection of charged macromolecules. Most likely, this approach can be transferred to the label-free detection of other charged molecules such as enzymes or antibodies. KW - polystyrene sulfonate KW - gold nanoparticles KW - field-effect sensor KW - detection of charged macromolecules KW - capacitive EIS sensor Y1 - 2021 U6 - https://doi.org/10.1002/elsa.202100179 SN - 0938-5193 VL - 2 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shalaby, Ahmed A1 - Shasha, Carolyn A1 - Krishnan, Kannan M. A1 - Krause, Hans-Joachim T1 - Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory JF - Nanomaterials N2 - Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory. KW - Magnetic nanoparticles KW - Frequency mixing magnetic detection KW - Langevin theory KW - Micromagnetic simulation KW - Nonequilibrium dynamics Y1 - 2021 SN - 2079-4991 U6 - https://doi.org/10.3390/nano11051257 N1 - This article belongs to the Special Issue Applications and Properties of Magnetic Nanoparticles VL - 11 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kahmann, Stephanie L. A1 - Rausch, Valentin A1 - Plümer, Jonathan A1 - Müller, Lars P. A1 - Pieper, Martin A1 - Wegmann, Kilian T1 - The automized fracture edge detection and generation of three-dimensional fracture probability heat maps JF - Medical Engineering & Physics N2 - With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1–2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further. KW - Fracture classification KW - Shoulder KW - Probability distribution mapping KW - Morphing KW - Imaging Y1 - 2022 SN - 1350-4533 VL - 2022 IS - 110 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abbas, Karim A1 - Balc, Nicolae A1 - Bremen, Sebastian A1 - Skupin, Marco T1 - Crystallization and aging behavior of polyetheretherketone PEEK within rapid tooling and rubber molding JF - Journal of Manufacturing and Materials Processing N2 - In times of short product life cycles, additive manufacturing and rapid tooling are important methods to make tool development and manufacturing more efficient. High-performance polymers are the key to mold production for prototypes and small series. However, the high temperatures during vulcanization injection molding cause thermal aging and can impair service life. The extent to which the thermal stress over the entire process chain stresses the material and whether it leads to irreversible material aging is evaluated. To this end, a mold made of PEEK is fabricated using fused filament fabrication and examined for its potential application. The mold is heated to 200 ◦C, filled with rubber, and cured. A differential scanning calorimetry analysis of each process step illustrates the crystallization behavior and first indicates the material resistance. It shows distinct cold crystallization regions at a build chamber temperature of 90 ◦C. At an ambient temperature above Tg, crystallization of 30% is achieved, and cold crystallization no longer occurs. Additional tensile tests show a decrease in tensile strength after ten days of thermal aging. The steady decrease in recrystallization temperature indicates degradation of the additives. However, the tensile tests reveal steady embrittlement of the material due to increasing crosslinking. KW - additive manufacturing KW - fused filament fabrication KW - crystallization KW - polyetheretherketone KW - rapid tooling Y1 - 2022 U6 - https://doi.org/10.3390/jmmp6050093 SN - 2504-4494 N1 - The article belongs to the Special Issue Advances in Injection Molding: Process, Materials and Applications VL - 6 IS - 5 SP - 1 EP - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture JF - International Journal of Gas Turbine, Propulsion and Power Systems N2 - The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance Y1 - 2022 SN - 1882-5079 VL - 13 IS - 2 SP - 1 EP - 7 ER - TY - CHAP A1 - Langohr, Philipp A1 - Bung, Daniel Bernhard A1 - Crookston, Brian M. ED - Ortega-Sánchez, Miguel T1 - Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation T2 - Proceedings of the 39th IAHR World Congress N2 - The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022738 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 2313 EP - 2318 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - CHAP A1 - Crookston, Brian M. A1 - Bung, Daniel Bernhard ED - Ortega-Sánchez, Miguel T1 - Application of RGB-D cameras in hydraulic laboratory studies T2 - Proceedings of the 39th IAHR World Congress N2 - Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors’ experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022964 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 5127 EP - 5133 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - https://doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Haeger, Gerrit A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent JF - Analytical Biochemistry N2 - An improved and convenient ninhydrin assay for aminoacylase activity measurements was developed using the commercial EZ Nin™ reagent. Alternative reagents from literature were also evaluated and compared. The addition of DMSO to the reagent enhanced the solubility of Ruhemann's purple (RP). Furthermore, we found that the use of a basic, aqueous buffer enhances stability of RP. An acidic protocol for the quantification of lysine was developed by addition of glacial acetic acid. The assay allows for parallel processing in a 96-well format with measurements microtiter plates. Y1 - 2022 U6 - https://doi.org/10.1016/j.ab.2022.114819 SN - 1096-0309 IS - 624 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Krafft, Simone A1 - Kuka, Katrin A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - Utilization of Lolium perenne varieties as a renewable substrate for single-cell proteins, lactate, and composite materials T2 - Chemie Ingenieur Technik N2 - Lolium perenne (perennial ryegrass) is aproductive and high-quality forage grass indigenous to Southern Europe, temperate Asia, and North Africa. Nowadays it is widespread and the dominant grass species on green areas in temperate climates. This abundant source of biomass is suitable for the development of bioeconomic processes because of its high cellulose and water-soluble carbohydrate content. In this work, novel breeds of the perennial ryegrass are being examined with regards to their quality parameters and biotechnological utilization options within the context of bioeconomy. Three processing operations are presented. In the first process, the perennial ryegrass is pretreated by pressing or hydrothermal extraction to derive glucosevia subsequent enzymatic hydrolysis of cellulose. A yield of up to 82 % glucose was achieved when using the hydrothermal ex-traction as pretreatment. In a second process, the ryegrass is used to produce lactic acid in high concentrations. The influence of the growth conditions and the cutting time on the carboxylic acid yield is investigated. A yield of lactic acid of above 150 g kg⁻¹ dry matter was achieved. The third process is to use Lolium perenne as a substrate in the fermentation of K. marxianus for the microbial production of single-cell proteins. The perennial ryegrass is screw-pressed and the press juice is used as medium. When supplementing the press juice with yeast media components, a biomass concentration of up to 16 g L⁻¹ could be achieved. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255306 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1303 EP - 1304 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Burgeth, Bernhard A1 - Kleefeld, Andreas A1 - Zhang, Eugene A1 - Zhang, Yue ED - Baudrier, Étienne ED - Naegel, Benoît ED - Krähenbühl, Adrien ED - Tajine, Mohamed T1 - Towards Topological Analysis of Non-symmetric Tensor Fields via Complexification T2 - Discrete Geometry and Mathematical Morphology N2 - Fields of asymmetric tensors play an important role in many applications such as medical imaging (diffusion tensor magnetic resonance imaging), physics, and civil engineering (for example Cauchy-Green-deformation tensor, strain tensor with local rotations, etc.). However, such asymmetric tensors are usually symmetrized and then further processed. Using this procedure results in a loss of information. A new method for the processing of asymmetric tensor fields is proposed restricting our attention to tensors of second-order given by a 2x2 array or matrix with real entries. This is achieved by a transformation resulting in Hermitian matrices that have an eigendecomposition similar to symmetric matrices. With this new idea numerical results for real-world data arising from a deformation of an object by external forces are given. It is shown that the asymmetric part indeed contains valuable information. Y1 - 2022 SN - 978-3-031-19897-7 U6 - https://doi.org/10.1007/978-3-031-19897-7_5 N1 - Second International Joint Conference, DGMM 2022, Strasbourg, France, October 24–27, 2022 N1 - Corresponding author: Andreas Kleefeld SP - 48 EP - 59 PB - Springer CY - Cham ER - TY - JOUR A1 - Rübbelke, Dirk A1 - Vögele, Stefan A1 - Grajewski, Matthias A1 - Zobel, Luzy T1 - Hydrogen-based steel production and global climate protection: An empirical analysis of the potential role of a European cross border adjustment mechanism JF - Journal of Cleaner Production N2 - The European Union's aim to become climate neutral by 2050 necessitates ambitious efforts to reduce carbon emissions. Large reductions can be attained particularly in energy intensive sectors like iron and steel. In order to prevent the relocation of such industries outside the EU in the course of tightening environmental regulations, the establishment of a climate club jointly with other large emitters and alternatively the unilateral implementation of an international cross-border carbon tax mechanism are proposed. This article focuses on the latter option choosing the steel sector as an example. In particular, we investigate the financial conditions under which a European cross border mechanism is capable to protect hydrogen-based steel production routes employed in Europe against more polluting competition from abroad. By using a floor price model, we assess the competitiveness of different steel production routes in selected countries. We evaluate the climate friendliness of steel production on the basis of specific GHG emissions. In addition, we utilize an input-output price model. It enables us to assess impacts of rising cost of steel production on commodities using steel as intermediates. Our results raise concerns that a cross-border tax mechanism will not suffice to bring about competitiveness of hydrogen-based steel production in Europe because the cost tends to remain higher than the cost of steel production in e.g. China. Steel is a classic example for a good used mainly as intermediate for other products. Therefore, a cross-border tax mechanism for steel will increase the price of products produced in the EU that require steel as an input. This can in turn adversely affect competitiveness of these sectors. Hence, the effects of higher steel costs on European exports should be borne in mind and could require the cross-border adjustment mechanism to also subsidize exports. Y1 - 2022 U6 - https://doi.org/10.1016/j.jclepro.2022.135040 SN - 0959-6526 VL - 380 IS - Part 2, Art. Nr.:135040 PB - Elsevier ER - TY - CHAP A1 - Mahdi, Zahra A1 - Dersch, Jürgen A1 - Schmitz, Pascal A1 - Dieckmann, Simon A1 - Chico Caminos, Ricardo Alexander A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf A1 - Schwager, Christian A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Gedle, Yibekal A1 - Büscher, Rauno T1 - Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants T2 - SOLARPACES 2020 N2 - The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP). KW - Solar thermal technologies KW - Hybrid energy system KW - Concentrated solar power KW - Power plants KW - Energy storage Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086269 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Hoffmann, Andreas A1 - Rohrbach, Felix A1 - Uhl, Matthias A1 - Ceblin, Maximilian A1 - Bauer, Thomas A1 - Mallah, Marcel A1 - Jacob, Timo A1 - Heuermann, Holger A1 - Kuehne, Alexander J. C. T1 - Atmospheric pressure plasma-jet treatment of polyacrylonitrile-nonwovens—Stabilization and roll-to-roll processing JF - Journal of Applied Polymer Science N2 - Carbon nanofiber nonwovens represent a powerful class of materials with prospective application in filtration technology or as electrodes with high surface area in batteries, fuel cells, and supercapacitors. While new precursor-to-carbon conversion processes have been explored to overcome productivity restrictions for carbon fiber tows, alternatives for the two-step thermal conversion of polyacrylonitrile precursors into carbon fiber nonwovens are absent. In this work, we develop a continuous roll-to-roll stabilization process using an atmospheric pressure microwave plasma jet. We explore the influence of various plasma-jet parameters on the morphology of the nonwoven and compare the stabilized nonwoven to thermally stabilized samples using scanning electron microscopy, differential scanning calorimetry, and infrared spectroscopy. We show that stabilization with a non-equilibrium plasma-jet can be twice as productive as the conventional thermal stabilization in a convection furnace, while producing electrodes of comparable electrochemical performance. KW - batteries and fuel cells KW - electrospinning KW - fibers KW - irradiation KW - porous materials Y1 - 2022 U6 - https://doi.org/10.1002/app.52887 SN - 0021-8995 (Print) SN - 1097-4628 (Online) N1 - Weitere Informationen: Bundesministerium für Bildung und Forschung, Fördernummer: 13XP5036E. Deutsche Forschungsgemeinschaft, Fördernummern: 390874152, 441209207, 327886311 VL - 139 IS - 37 SP - 1 EP - 9 PB - Wiley ER - TY - CHAP A1 - Zahra, Mahdi A1 - Phani Srujan, Merige A1 - Chico Caminos, Ricardo Alexander A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Gedle, Yibekal A1 - Dersch, Jürgen T1 - Modeling the thermal behavior of solar salt in electrical resistance heaters for the application in PV-CSP hybrid power plants T2 - SOLARPACES 2020 N2 - Concentrated Solar Power (CSP) systems are able to store energy cost-effectively in their integrated thermal energy storage (TES). By intelligently combining Photovoltaics (PV) systems with CSP, a further cost reduction of solar power plants is expected, as well as an increase in dispatchability and flexibility of power generation. PV-powered Resistance Heaters (RH) can be deployed to raise the temperature of the molten salt hot storage from 385 °C up to 565 °C in a Parabolic Trough Collector (PTC) plant. To avoid freezing and decomposition of molten salt, the temperature distribution in the electrical resistance heater is investigated in the present study. For this purpose, a RH has been modeled and CFD simulations have been performed. The simulation results show that the hottest regions occur on the electric rod surface behind the last baffle. A technical optimization was performed by adjusting three parameters: Shell-baffle clearance, electric rod-baffle clearance and number of baffles. After the technical optimization was carried out, the temperature difference between the maximum temperature and the average outlet temperature of the salt is within the acceptable limits, thus critical salt decomposition has been avoided. Additionally, the CFD simulations results were analyzed and compared with results obtained with a one-dimensional model in Modelica. KW - Solar thermal technologies KW - Hybrid energy system KW - Concentrated solar power KW - Energy storage KW - Photovoltaics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086268 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - Limit and shakedown analysis of structures under random strength T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training N2 - Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables. KW - Reliability of structures KW - Stochastic programming KW - Chance constrained programming KW - Shakedown analysis KW - Limit analysis Y1 - 2022 SN - 978-604-357-084-7 N1 - 11th National Conference on Mechanics (NACOME 2022), December 2-3, 2022, VNU University of Engineering and Technology, Hanoi, Vietnam SP - 510 EP - 518 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - JOUR A1 - Harris, Isaac A1 - Kleefeld, Andreas T1 - Analysis and computation of the transmission eigenvalues with a conductive boundary condition JF - Applicable Analysis N2 - We provide a new analytical and computational study of the transmission eigenvalues with a conductive boundary condition. These eigenvalues are derived from the scalar inverse scattering problem for an inhomogeneous material with a conductive boundary condition. The goal is to study how these eigenvalues depend on the material parameters in order to estimate the refractive index. The analytical questions we study are: deriving Faber–Krahn type lower bounds, the discreteness and limiting behavior of the transmission eigenvalues as the conductivity tends to infinity for a sign changing contrast. We also provide a numerical study of a new boundary integral equation for computing the eigenvalues. Lastly, using the limiting behavior we will numerically estimate the refractive index from the eigenvalues provided the conductivity is sufficiently large but unknown. KW - Boundary integral equations KW - Inverse spectral problem KW - Conductive boundary condition KW - Transmission eigenvalues Y1 - 2020 U6 - https://doi.org/10.1080/00036811.2020.1789598 SN - 1563-504X VL - 101 IS - 6 SP - 1880 EP - 1895 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Blaneck, Patrick Gustav A1 - Bornheim, Tobias A1 - Grieger, Niklas A1 - Bialonski, Stephan T1 - Automatic readability assessment of german sentences with transformer ensembles T2 - Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text N2 - Reliable methods for automatic readability assessment have the potential to impact a variety of fields, ranging from machine translation to self-informed learning. Recently, large language models for the German language (such as GBERT and GPT-2-Wechsel) have become available, allowing to develop Deep Learning based approaches that promise to further improve automatic readability assessment. In this contribution, we studied the ability of ensembles of fine-tuned GBERT and GPT-2-Wechsel models to reliably predict the readability of German sentences. We combined these models with linguistic features and investigated the dependence of prediction performance on ensemble size and composition. Mixed ensembles of GBERT and GPT-2-Wechsel performed better than ensembles of the same size consisting of only GBERT or GPT-2-Wechsel models. Our models were evaluated in the GermEval 2022 Shared Task on Text Complexity Assessment on data of German sentences. On out-of-sample data, our best ensemble achieved a root mean squared error of 0:435. Y1 - 2022 U6 - https://doi.org/10.48550/arXiv.2209.04299 N1 - Proceedings of the 18th Conference on Natural Language Processing / Konferenz zur Verarbeitung natürlicher Sprache (KONVENS 2022), 12-15 September, 2022, University of Potsdam, Potsdam, Germany SP - 57 EP - 62 PB - Association for Computational Linguistics CY - Potsdam ER - TY - JOUR A1 - Defosse, Jerome A1 - Kleinschmidt, Joris A1 - Schmutz, Axel A1 - Loop, Torsten A1 - Staat, Manfred A1 - Gatzweiler, Karl-Heinz A1 - Wappler, Frank A1 - Schieren, Mark T1 - Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study JF - Journal of Cardiothoracic and Vascular Anesthesia KW - anaesthetic complications KW - dental trauma KW - difficult airway KW - double-lumen tube intubation KW - videolaryngoscopy Y1 - 2022 U6 - https://doi.org/10.1053/j.jvca.2022.02.017 SN - 1053-0770 VL - 36 IS - 8, Part B SP - 3021 EP - 3027 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Rossi, Leonardo A1 - Winands, Mark H. M. A1 - Butenweg, Christoph ED - Zhang, Jessica T1 - Monte Carlo Tree Search as an intelligent search tool in structural design problems JF - Engineering with Computers : An International Journal for Simulation-Based Engineering N2 - Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study’s outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers. KW - Monte Carlo Tree Search KW - Structural design KW - Artificial intelligence KW - Civil engineering KW - Genetic algorithm Y1 - 2022 U6 - https://doi.org/10.1007/s00366-021-01338-2 SN - 1435-5663 SN - 0177-0667 VL - 38 IS - 4 SP - 3219 EP - 3236 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Hoffmann, Andreas A1 - Uhl, Matthias A1 - Ceblin, Maximilian A1 - Rohrbach, Felix A1 - Bansmann, Joachim A1 - Mallah, Marcel A1 - Heuermann, Holger A1 - Jacob, Timo A1 - Kuehne, Alexander J.C. T1 - Atmospheric pressure plasma-jet treatment of PAN-nonwovens—carbonization of nanofiber electrodes JF - C - Journal of Carbon Research N2 - Carbon nanofibers are produced from dielectric polymer precursors such as polyacrylonitrile (PAN). Carbonized nanofiber nonwovens show high surface area and good electrical conductivity, rendering these fiber materials interesting for application as electrodes in batteries, fuel cells, and supercapacitors. However, thermal processing is slow and costly, which is why new processing techniques have been explored for carbon fiber tows. Alternatives for the conversion of PAN-precursors into carbon fiber nonwovens are scarce. Here, we utilize an atmospheric pressure plasma jet to conduct carbonization of stabilized PAN nanofiber nonwovens. We explore the influence of various processing parameters on the conductivity and degree of carbonization of the converted nanofiber material. The precursor fibers are converted by plasma-jet treatment to carbon fiber nonwovens within seconds, by which they develop a rough surface making subsequent surface activation processes obsolete. The resulting carbon nanofiber nonwovens are applied as supercapacitor electrodes and examined by cyclic voltammetry and impedance spectroscopy. Nonwovens that are carbonized within 60 s show capacitances of up to 5 F g⁻¹. Y1 - 2022 U6 - https://doi.org/10.3390/c8030033 SN - 2311-5629 N1 - This article belongs to the Collection "Nanoporous Carbon Materials for Advanced Technological Applications" VL - 8 IS - 3 PB - MDPI CY - Basel ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 2747 EP - 2756 ER - TY - CHAP A1 - Gedle, Yibekal A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Mahdi, Zahra A1 - Chico Caminos, Ricardo Alexander A1 - Dersch, Jürgen T1 - Analysis of an integrated CSP-PV hybrid power plant T2 - SOLARPACES 2020 N2 - In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] – [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. KW - Hybrid energy system KW - Power plants KW - Electricity generation KW - Energy storage KW - Associated liquids Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086236 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel Bernhard A1 - Erpicum, Sebastien A1 - Peltier, Yann A1 - Dewals, Benjamin T1 - Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling JF - Journal of Hydro-environment Research N2 - Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models). KW - coherent structures KW - hydraulic modelling KW - model performance KW - Proper Orthogonal Decomposition KW - Q-criterion Y1 - 2022 U6 - https://doi.org/10.1016/j.jher.2022.03.002 SN - 1570-6443 IS - In Press PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - https://doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - CHAP A1 - Niederwestberg, Stefan A1 - Schneider, Falko A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Introduction to a direct irradiated transparent tube particle receiver T2 - SOLARPACES 2020 N2 - New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. KW - Solar irradiance KW - Ceramics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086735 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 3261 EP - 3270 ER - TY - CHAP A1 - Pütz, Sebastian A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Mertens, Alexander A1 - Rodemann, Niklas A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena T1 - An interdisciplinary view on humane interfaces for digital shadows in the internet of production T2 - 2022 15th International Conference on Human System Interaction (HSI) N2 - Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers’ capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization. KW - digital twin KW - digital shadow KW - cyber-physical production system KW - human-machine interface Y1 - 2022 SN - 978-1-6654-6823-7 (Print) SN - 978-1-6654-6822-0 (Online) U6 - https://doi.org/10.1109/HSI55341.2022.9869467 SN - 2158-2246 (Print) SN - 2158-2254 (Online) N1 - 15th International Conference on Human System Interaction (HSI), 28-31 July 2022, Melbourne, Australia. PB - IEEE ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Reinecke, Diana A1 - Klose, Holger A1 - Kuperjans, Isabel A1 - Grömping, Markus T1 - Anaerobic digestion of algal–bacterial biomass of an Algal Turf Scrubber system JF - Biomass Conversion and Biorefinery N2 - This study investigated the anaerobic digestion of an algal–bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal–bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4%) and a mixture of manure and maize silage (107.4%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6%) and percolated green waste (43.5%) inocula. To further evaluate the potential of algal–bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7–12.5 MWh a−1) can be gained through the addition of algal–bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies. KW - Biogas KW - Methane KW - Algal Turf Scrubber KW - Algal–bacterial bioflm KW - Circular bioeconomy Y1 - 2022 U6 - https://doi.org/10.1007/s13399-022-03236-z SN - 2190-6823 N1 - Corresponding author: Dheeraja Cheenakula VL - 13 SP - 15 Seiten PB - Springer CY - Berlin ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Atti, Vikrama A1 - Alexopoulos, Spiros A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf A1 - Dutta, Siddharth A1 - Kioutsioukis, Ioannis T1 - DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook T2 - SolarPACES 2022 conference proceedings N2 - This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut Jülich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 % based on the tested days. The result fulfils SIJ’s aim to achieve a reliability of around 70 %, but SIJ aims to still improve the DNI forecast quality. KW - Direct normal irradiance forecast KW - DNI forecast KW - Parabolic trough collector KW - PTC KW - Thermal Energy Storage Y1 - 2024 U6 - https://doi.org/10.52825/solarpaces.v1i.731 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Schneider, Iesse Peer A1 - Angele, Florian A1 - Atti, Vikrama A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Development of heliostat field calibration methods: Theory and experimental test results T2 - SolarPACES 2022 conference proceedings N2 - In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut Jülich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy. KW - Heliostat Field Calibration KW - Unmanned aerial vehicle KW - UAV KW - Quadrocopter KW - Camera system Y1 - 2024 U6 - https://doi.org/10.52825/solarpaces.v1i.678 SN - 2751-9899 (online) N1 - SolarPACES 2022: 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - https://doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany VL - 5 IS - 1, Article number: 17 PB - Springer Nature ER - TY - JOUR A1 - Schulte-Tigges, Joschua A1 - Förster, Marco A1 - Nikolovski, Gjorgji A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Kaszner, Daniel A1 - Matheis, Dominik A1 - Walter, Thomas T1 - Benchmarking of various LiDAR sensors for use in self-driving vehicles in real-world environments JF - Sensors N2 - Abstract In this paper, we report on our benchmark results of the LiDAR sensors Livox Horizon, Robosense M1, Blickfeld Cube, Blickfeld Cube Range, Velodyne Velarray H800, and Innoviz Pro. The idea was to test the sensors in different typical scenarios that were defined with real-world use cases in mind, in order to find a sensor that meet the requirements of self-driving vehicles. For this, we defined static and dynamic benchmark scenarios. In the static scenarios, both LiDAR and the detection target do not move during the measurement. In dynamic scenarios, the LiDAR sensor was mounted on the vehicle which was driving toward the detection target. We tested all mentioned LiDAR sensors in both scenarios, show the results regarding the detection accuracy of the targets, and discuss their usefulness for deployment in self-driving cars. KW - Lidar KW - Benchmark KW - Self-driving Y1 - 2022 U6 - https://doi.org/10.3390/s22197146 SN - 1424-8220 N1 - This article belongs to the Special Issue "Sensor Fusion for Vehicles Navigation and Robotic Systems" VL - 22 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Colombo, Daniele A1 - Drira, Slah A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis JF - International Journal for Numerical Methods in Engineering N2 - Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element. KW - distorted element KW - ES-FEM KW - FS-FEM KW - non-simplex S-FEM elements KW - S-FEM Y1 - 2022 U6 - https://doi.org/10.1002/nme.7126 SN - 1097-0207 VL - 124 IS - 2 SP - 402 EP - 433 PB - Wiley CY - Chichester ER - TY - CHAP A1 - Hinke, Christian A1 - Vervier, Luisa A1 - Brauner, Philipp A1 - Schneider, Sebastian A1 - Steuer-Dankert, Linda A1 - Ziefle, Martina A1 - Leicht-Scholten, Carmen T1 - Capability configuration in next generation manufacturing T2 - Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models N2 - Industrial production systems are facing radical change in multiple dimensions. This change is caused by technological developments and the digital transformation of production, as well as the call for political and social change to facilitate a transformation toward sustainability. These changes affect both the capabilities of production systems and companies and the design of higher education and educational programs. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these concepts, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the capabilities dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we discuss the benefits of capturing expert knowledge and making it accessible to newcomers, especially in highly specialized industries. The experts argue that in order to cope with the challenges and circumstances of today’s world, students must already during their education at university learn how to work with AI and other technologies. This means that study programs must change and that universities must adapt their structural aspects to meet the needs of the students. Y1 - 2022 SN - 978-3-031-07733-3 U6 - https://doi.org/10.1007/978-3-031-07734-0_6 SP - 95 EP - 106 PB - Springer CY - Cham ER - TY - JOUR A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Ansal, Atilla T1 - Latest findings on the behaviour factor q for the seismic design of URM buildings JF - Bulletin of Earthquake Engineering N2 - Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20–0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0–3.0 are proposed. KW - Unreinforced masonry buildings KW - Modern constructions KW - Seismic design KW - Linear elastic analysis KW - Behaviour factor q Y1 - 2022 U6 - https://doi.org/10.1007/s10518-022-01419-7 SN - 1573-1456 SN - 1570-761X VL - 20 IS - 11 SP - 5797 EP - 5848 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Allal, D. A1 - Bannister, R. A1 - Buisman, K. A1 - Capriglione, D. A1 - Di Capua, G. A1 - García-Patrón, M. A1 - Gatzweiler, Thomas A1 - Gellersen, F. A1 - Harzheim, Thomas A1 - Heuermann, Holger A1 - Hoffmann, J. A1 - Izbrodin, A. A1 - Kuhlmann, K. A1 - Lahbacha, K. A1 - Maffucci, A. A1 - Miele, G. A1 - Mubarak, F. A1 - Salter, M. A1 - Pham, T.D. A1 - Sayegh, A. A1 - Singh, D. A1 - Stein, F. A1 - Zeier, M. T1 - RF measurements for future communication applications: an overview T2 - 2022 IEEE International Symposium on Measurements & Networking (M&N) N2 - In this paper research activities developed within the FutureCom project are presented. The project, funded by the European Metrology Programme for Innovation and Research (EMPIR), aims at evaluating and characterizing: (i) active devices, (ii) signal- and power integrity of field programmable gate array (FPGA) circuits, (iii) operational performance of electronic circuits in real-world and harsh environments (e.g. below and above ambient temperatures and at different levels of humidity), (iv) passive inter-modulation (PIM) in communication systems considering different values of temperature and humidity corresponding to the typical operating conditions that we can experience in real-world scenarios. An overview of the FutureCom project is provided here, then the research activities are described. KW - FPGA KW - signal integrity KW - power integrity KW - passive inter-modulation KW - metrological characterization Y1 - 2022 SN - 978-1-6654-8362-9 SN - 978-1-6654-8363-6 U6 - https://doi.org/10.1109/MN55117.2022.9887740 SN - 2639-5061 SN - 2639-507X N1 - 2022 IEEE International Symposium on Measurements & Networking (M&N), 18-20 July 2022, Padua, Italy. SP - 1 EP - 6 PB - IEEE ER - TY - JOUR A1 - Peere, Wouter A1 - Blanke, Tobias ED - Vernon, Chris T1 - GHEtool: An open-source tool for borefield sizing in Python JF - Journal of Open Source Software N2 - GHEtool is a Python package that contains all the functionalities needed to deal with borefield design. It is developed for both researchers and practitioners. The core of this package is the automated sizing of borefield under different conditions. The sizing of a borefield is typically slow due to the high complexity of the mathematical background. Because this tool has a lot of precalculated data, GHEtool can size a borefield in the order of tenths of milliseconds. This sizing typically takes the order of minutes. Therefore, this tool is suited for being implemented in typical workflows where iterations are required. GHEtool also comes with a graphical user interface (GUI). This GUI is prebuilt as an exe-file because this provides access to all the functionalities without coding. A setup to install the GUI at the user-defined place is also implemented and available at: https://www.mech.kuleuven.be/en/tme/research/thermal_systems/tools/ghetool. KW - geothermal KW - energy KW - borefields KW - sizing Y1 - 2022 U6 - https://doi.org/10.21105/joss.04406 SN - 2475-9066 VL - 7 IS - 76 SP - 1 EP - 4, 4406 ER - TY - JOUR A1 - Molinnus, Denise A1 - Janus, Kevin Alexander A1 - Fang, Anyelina C. A1 - Drinic, Aleksander A1 - Achtsnicht, Stefan A1 - Köpf, Marius A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Thick-film carbon electrode deposited onto a biodegradable fibroin substrate for biosensing applications JF - Physica status solidi (a) N2 - This study addresses a proof-of-concept experiment with a biocompatible screen-printed carbon electrode deposited onto a biocompatible and biodegradable substrate, which is made of fibroin, a protein derived from silk of the Bombyx mori silkworm. To demonstrate the sensor performance, the carbon electrode is functionalized as a glucose biosensor with the enzyme glucose oxidase and encapsulated with a silicone rubber to ensure biocompatibility of the contact wires. The carbon electrode is fabricated by means of thick-film technology including a curing step to solidify the carbon paste. The influence of the curing temperature and curing time on the electrode morphology is analyzed via scanning electron microscopy. The electrochemical characterization of the glucose biosensor is performed by amperometric/voltammetric measurements of different glucose concentrations in phosphate buffer. Herein, systematic studies at applied potentials from 500 to 1200 mV to the carbon working electrode (vs the Ag/AgCl reference electrode) allow to determine the optimal working potential. Additionally, the influence of the curing parameters on the glucose sensitivity is examined over a time period of up to 361 days. The sensor shows a negligible cross-sensitivity toward ascorbic acid, noradrenaline, and adrenaline. The developed biocompatible biosensor is highly promising for future in vivo and epidermal applications. KW - biocompatible materials KW - biodegradable electronic devices KW - biosensors KW - carbon electrodes KW - glucose Y1 - 2022 U6 - https://doi.org/10.1002/pssa.202200100 SN - 1862-6319 N1 - Corresponding author: Michael J. Schöning VL - 219 IS - 23 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Schwager, Christian A1 - Angele, Florian A1 - Nouri, Bijan A1 - Schwarzbözl, Peter A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Impact of DNI forecast quality on performance prediction for a commercial scale solar tower: Application of nowcasting DNI maps to dynamic solar tower simulation T2 - SolarPACES 2022 conference proceedings N2 - Concerning current efforts to improve operational efficiency and to lower overall costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study investigates the quality and uncertainty of nowcasting data regarding the implications for process predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcasting system are applied to a dynamic prediction model coupled with ray tracing. The results underline the need for high-resolution DNI maps in order to predict net yield and receiver outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a correlation is developed, which allows for predicting the uncertainty of the net power prediction based on the corresponding DNI forecast uncertainty. However, the study reveals significant prediction errors and the demand for further improvement in the accuracy at which local shadings are forecasted. KW - Process prediction KW - DNI forecasting KW - Nowcasting KW - Uncertainty analysis KW - Molten salt receiver system, Y1 - 2024 U6 - https://doi.org/10.52825/solarpaces.v1i.675 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Frantz, Cathy A1 - Schloms, Felix A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios T2 - SolarPACES 2022 conference proceedings N2 - A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so. KW - Molten salt receiver KW - Star design KW - Control optimization KW - Cloud passages Y1 - 2023 U6 - https://doi.org/10.52825/solarpaces.v1i.693 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Striebing, Clemens A1 - Müller, Jörg A1 - Schraudner, Martina A1 - Gewinner, Irina Valerie A1 - Guerrero Morales, Patricia A1 - Hochfeld, Katharina A1 - Hoffman, Shekinah A1 - Kmec, Julie A. A1 - Nguyen, Huu Minh A1 - Schneider, Jannick A1 - Sheridan, Jennifer A1 - Steuer-Dankert, Linda A1 - Trimble O'Connor, Lindsey A1 - Vandevelde-Rougale, Agnès T1 - Promoting diversity and combatting discrimination in research organizations: a practitioner’s guide T2 - Diversity and discrimination in research organizations N2 - The essay is addressed to practitioners in research management and from academic leadership. It describes which measures can contribute to creating an inclusive climate for research teams and preventing and effectively dealing with discrimination. The practical recommendations consider the policy and organizational levels, as well as the individual perspective of research managers. Following a series of basic recommendations, six lessons learned are formulated, derived from the contributions to the edited collection on “Diversity and Discrimination in Research Organizations.” KW - Inclusive work climate KW - lessons learned KW - policy recommendations KW - recommendations for actions KW - bullying Y1 - 2022 SN - 978-1-80117-959-1 (Print) SN - 978-1-80117-956-0 (Online) U6 - https://doi.org/10.1108/978-1-80117-956-020221012 SP - 421 EP - 442 PB - Emerald Publishing Limited CY - Bingley ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Bernhard, Sebastian A1 - Langolf, Jessica A1 - Leicht-Scholten, Carmen T1 - Managing change and acceptance of digitalization strategies - Implementing the vision of „Internet of Production“ (IoP) in existing corporate structures T2 - Textile Impulse für die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022 N2 - The vision of the Internet of Production is to enable a new level of crossdomain collaboration by providing semantically adequate and context-aware data from production, development & usage in real-time. Y1 - 2022 N1 - Textile Impulse für die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022 : 1. – 2. Dezember 2022, Eurogress Aachen SP - 153 EP - 153 ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Perceiving diversity : an explorative approach in a complex research organization. T2 - Diversity and discrimination in research organizations N2 - Diversity management is seen as a decisive factor for ensuring the development of socially responsible innovations (Beacham and Shambaugh, 2011; Sonntag, 2014; López, 2015; Uebernickel et al., 2015). However, many diversity management approaches fail due to a one-sided consideration of diversity (Thomas and Ely, 2019) and a lacking linkage between the prevailing organizational culture and the perception of diversity in the respective organization. Reflecting the importance of diverse perspectives, research institutions have a special responsibility to actively deal with diversity, as they are publicly funded institutions that drive socially relevant development and educate future generations of developers, leaders and decision-makers. Nevertheless, only a few studies have so far dealt with the influence of the special framework conditions of the science system on diversity management. Focusing on the interdependency of the organizational culture and diversity management especially in a university research environment, this chapter aims in a first step to provide a theoretical perspective on the framework conditions of a complex research organization in Germany in order to understand the system-specific factors influencing diversity management. In a second step, an exploratory cluster analysis is presented, investigating the perception of diversity and possible influencing factors moderating this perception in a scientific organization. Combining both steps, the results show specific mechanisms and structures of the university research environment that have an impact on diversity management and rigidify structural barriers preventing an increase of diversity. The quantitative study also points out that the management level takes on a special role model function in the scientific system and thus has an influence on the perception of diversity. Consequently, when developing diversity management approaches in research organizations, it is necessary to consider the top-down direction of action, the special nature of organizational structures in the university research environment as well as the special role of the professorial level as role model for the scientific staff. KW - Diversity management KW - Organizational culture KW - Change management KW - Psychological concepts KW - Perception Y1 - 2022 SN - 978-1-80117-959-1 (Print) SN - 978-1-80117-956-0 (Online) U6 - https://doi.org/10.1108/978-1-80117-956-020221010 SP - 365 EP - 392 PB - Emerald Publishing Limited CY - Bingley ER - TY - GEN A1 - Feldmann, Marco A1 - Francke, Gero A1 - Espe, Clemes A1 - Chen, Qian A1 - Baader, Fabian A1 - Boxberg, Marc S. A1 - Sustrate, Anna-Marie A1 - Kowalski, Julia A1 - Dachwald, Bernd T1 - Performance data of an ice-melting probe from field tests in two different ice environments N2 - This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters). KW - Ocean Worlds KW - Icy Moons KW - Cryobot KW - Analogue Environments KW - Melting Efficiency KW - Melting Performance KW - Melting Probe KW - Ice Melting Y1 - 2022 U6 - https://doi.org/10.5281/zenodo.6094866 N1 - Forschungsdaten zu "Field-test performance of an ice-melting probe in a terrestrial analogue environment" (https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/docId/10889) ER - TY - CHAP A1 - Chico Caminos, Ricardo Alexander A1 - Schmitz, Pascal A1 - Atti, Vikrama A1 - Mahdi, Zahra A1 - Teixeira Boura, Cristiano José A1 - Sattler, Johannes Christoph A1 - Herrmann, Ulf A1 - Hilger, Patrick A1 - Dieckmann, Simon T1 - Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method T2 - SOLARPACES 2020 N2 - The Solar-Institut Jülich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called “micro heliostat”. Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed. KW - Concentrated solar power KW - Electricity generation KW - Measuring instruments KW - Heliostats KW - Global change Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086262 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Mertens, Alexander A1 - Brauner, Philipp A1 - Baier, Ralph A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - van Dyck, Marc A1 - Kong, Iris A1 - Königs, Peter A1 - Kordtomeikel, Frauke A1 - Liehner, Gian Luca A1 - Pütz, Sebastian A1 - Rodermann, Niklas A1 - Schaar, Anne Kathrin A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Wlecke, Shari A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena ED - Michael, Judith ED - Pfeiffer, Jérôme ED - Wortmann, Andreas T1 - Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows T2 - Modellierung 2022 Satellite Events N2 - The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production. KW - human digital shadow KW - cyber physical production system KW - human factors Y1 - 2022 U6 - https://doi.org/10.18420/modellierung2022ws-018 N1 - Modellierung 2022, 27. Juni - 01. Juli 2022, Hamburg, Deutschland SP - 147 EP - 149 PB - GI Gesellschaft für Informatik CY - Bonn ER - TY - GEN A1 - Varriale, Ludovica A1 - Kuka, Katrin A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Use of a green biomass in a biorefinery platform T2 - Chemie Ingenieur Technik N2 - The emerging environmental issues due to the use of fossil resources are encouraging the exploration of new renewable resources. Biomasses are attracting more interest due to the low environmental impacts, low costs, and high availability on earth. In this scenario, green biorefineries are a promising platform in which green biomasses are used as feedstock. Grasses are mainly composed of cellulose and hemicellulose, and lignin is available in a small amount. In this work, a perennial ryegrass was used as feedstock to develop a green bio-refinery platform. Firstly, the grass was mechanically pretreated, thus obtaining a press juice and a press cake fraction. The press juice has high nutritional values and can be employed as part of fermentation media. The press cake can be employed as a substrate either in enzymatic hydrolysis or in solid-state fermentation. The overall aim of this work was to demonstrate different applications of both the liquid and the solid fractions. For this purpose, the filamentous fungus A. niger and the yeast Y. lipolythica were selected for their ability to produce citric acid. Finally, the possibility was assessed to use the press juice as part of fermentation media to cultivate S. cerevisiae and lactic acid bacteria for ethanol and lactic acid fermentation. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255095 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1299 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwager, Christian A1 - Flesch, Robert A1 - Schwarzbözl, Peter A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José T1 - Advanced two phase flow model for transient molten salt receiver system simulation JF - Solar Energy N2 - In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed. KW - Molten salt solar tower KW - Molten salt receiver system KW - Dynamic simulation KW - Two-phase modelling KW - Transient flux distribution Y1 - 2022 U6 - https://doi.org/10.1016/j.solener.2021.12.065 SN - 0038-092X (print) SN - 1471-1257 (online) VL - 232 SP - 362 EP - 375 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Braun, Lena A1 - Krafft, Simone A1 - Tippkötter, Nils T1 - Combined supercritical carbon dioxide extraction and chromatography of the algae fatty linoleic and linolenic acid T2 - Chemie Ingenieur Technik N2 - A method for the integrated extraction and separation of fatty acids from algae using supercritical CO2 is presented. Desmodesmus obliquus and Chlorella sorokiniana were used as algae. First, a method for chromatographic separation of fatty acids of different degrees of saturation was established and optimized. Then, an integrated method for supercritical extraction was developed for both algal species. It was also verified whether prior cell disruption was beneficial for extraction. In developing the method for chromatographic separation, statistical experimental design was used to determine the optimal parameter settings. The methanol content in the mobile phase proved to be the most important parameter for successful separation of the three unsaturated fatty acids oleic acid, linoleic acid, and linolenic acid. Supercritical extraction with dried algae showed that about four times more fatty acids can be extracted from C. sorokiniana relative to the dry mass used. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255308 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1304 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Welden, Melanie A1 - Severins, Robin A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Bongaerts, Johannes A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor JF - Chemosensors N2 - Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte–insulator–semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin–streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage–current, capacitance–voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution. Y1 - 2022 U6 - https://doi.org/10.3390/chemosensors10060218 SN - 2227-9040 N1 - This article belongs to the Special Issue "Nanostructured Devices for Biochemical Sensing" VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bhattarai, Aroj A1 - May, Charlotte Anabell A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Layer-specific damage modeling of porcine large intestine under biaxial tension JF - Bioengineering N2 - The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads. KW - biaxial tensile experiment KW - anisotropy KW - hyperelastic KW - constitutive modeling KW - damage Y1 - 2022 U6 - https://doi.org/10.3390/bioengineering9100528 SN - 2306-5354 N1 - Der Artikel gehört zum Sonderheft "Computational Biomechanics" VL - 9 IS - 10, Early Access SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Monakhova, Yulia A1 - Diehl, Bernd W.K. T1 - Nuclear magnetic resonance spectroscopy as an elegant tool for a complete quality control of crude heparin material JF - Journal of Pharmaceutical and Biomedical Analysis N2 - Nuclear magnetic resonance (NMR) spectrometric methods for the quantitative analysis of pure heparin in crude heparin is proposed. For quantification, a two-step routine was developed using a USP heparin reference sample for calibration and benzoic acid as an internal standard. The method was successfully validated for its accuracy, reproducibility, and precision. The methodology was used to analyze 20 authentic porcine heparinoid samples having heparin content between 4.25 w/w % and 64.4 w/w %. The characterization of crude heparin products was further extended to a simultaneous analysis of these common ions: sodium, calcium, acetate and chloride. A significant, linear dependence was found between anticoagulant activity and assayed heparin content for thirteen heparinoids samples, for which reference data were available. A Diffused-ordered NMR experiment (DOSY) can be used for qualitative analysis of specific glycosaminoglycans (GAGs) in heparinoid matrices and, potentially, for quantitative prediction of molecular weight of GAGs. NMR spectrometry therefore represents a unique analytical method suitable for the simultaneous quantitative control of organic and inorganic composition of crude heparin samples (especially heparin content) as well as an estimation of other physical and quality parameters (molecular weight, animal origin and activity). KW - NMR spectroscopy KW - Heparin KW - Crude heparin KW - USP KW - Ions Y1 - 2022 U6 - https://doi.org/10.1016/j.jpba.2022.114915 SN - 0731-7085 VL - 219 IS - Article number: 114915 PB - Elsevier CY - New York, NY ER -