TY - CHAP A1 - Huth, Thomas A1 - Elsen, Olaf A1 - Hartwig, Christoph A1 - Esch, Thomas T1 - Innovative modular valve trains for 2015 - logistic benefits by EMVT T2 - IFAC Proceedings Volumes, Volume 39, Issue 3 N2 - In this paper the way to a 5-day-car with respect to a modular valve train systems for spark ignited combustion engines is shown. The necessary product diversity is shift from mechanical or physical components to software components. Therefore, significant improvements of logistic indicators are expected and shown. The working principle of a camless cylinder head with respect to an electromagnetical valve train (EMVT) is explained and it is demonstrated that shifting physical diversity to software is feasible. The future design of combustion engine systems including customisation can be supported by a set of assistance tools which is shown exemplary. Y1 - 2006 U6 - https://doi.org/10.3182/20060517-3-FR-2903.00172 N1 - Part of special issue "12th IFAC Symposium on Information Control Problems in Manufacturing" SP - 315 EP - 320 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Kemper, Hans A1 - Hellenbroich, Gereon A1 - Esch, Thomas T1 - Concept of an innovative passenger-car hybrid drive for European driving conditions T2 - Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig N2 - The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 % savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition. Y1 - 2009 SN - 978-3-937655-20-8 SP - 264 EP - 287 PB - Gesamtzentrum für Verkehr (GZVB) CY - Braunschweig ER - TY - CHAP A1 - Wahle, Michael T1 - Calculation of the response of heat exchanger tubes with regard to nonlinear and prestressing effects T2 - Vibration in nuclear plant : proceedings of the 3rd International Conference on Vibration in Nuclear Plant held on 11 - 14 May 1982, Keswick ; vol. 1 Y1 - 1983 SN - 0-7277-0192-4 (Druckausg.) SN - 978-0-7277-5270-3 (E-Book) N1 - International Conference on Vibration in Nuclear Plant <3, 1982, Keswick> N1 - Paper 1.10 (Log No. 71) SP - 162 EP - 183 PB - British Nuclear Energy Society CY - London ER - TY - CHAP A1 - Carzana, Livio A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Model and trajectory optimization for an ideal laser-enhanced solar sail T2 - 68th International Astronautical Congress N2 - A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term ”ideal” means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to ”traditional” solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step Y1 - 2017 N1 - 68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017, 2017-09-25 → 2017-09-29, Adelaide, Australia ER - TY - CHAP A1 - Pflug, J. A1 - Wahle, Michael ED - Bürger, Gudrun T1 - Auslegung der CFK-Sandwich-Rumpfstruktur eines Hubschraubers mit der Methode der Finiten Elemente T2 - Basistechnologien für neue Herausforderungen in der Luft- und Raumfahrt : DGLR-Jahrestagung / Deutscher Luft- und Raumfahrt-Kongress 1994, Erlangen, 04.- 07. Oktober 1994. - (Jahrbuch der Deutschen Gesellschaft für Luft- und Raumfahrt ; 1994,3) Y1 - 1994 SP - 1135 EP - 1144 PB - DGLR CY - Bonn ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - The Impact of Electric Propulsion on the Performance of VTOL UAVs T2 - Deutscher Luft- und Raumfahrtkongress 2017, DLRK , München Y1 - 2017 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft T2 - Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea Y1 - 2017 ER - TY - CHAP A1 - Wahle, Michael T1 - Determination of flow induced nonlinear vibrations of prestressed heat exchanger tubes T2 - Advanced Course in Heat Exchangers : Theory and Practice ; ICHMT Symposium ; Dubrovnik, Croatia 1981. - (ICHMT digital library online ; 19) Y1 - 1983 SP - 339 EP - 353 PB - Begell House CY - Redding, Connecticut ER - TY - CHAP A1 - Nowack, N. A1 - Röth, Thilo A1 - Bührig-Polaczek, Andreas A1 - Klaus, G. ED - Hirsch, Jürgen T1 - Advanced Sheet Metal Components Reinforced by Light Metal Cast Structures T2 - Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11] Y1 - 2008 SN - 978-3-527-32367-8 IS - 2 SP - 2374 EP - 2381 ER - TY - CHAP A1 - Bührig-Polaczek, Andreas A1 - Röth, Thilo A1 - Baumeister, E. A1 - Nowack, N. A1 - Süßmann, Torsten T1 - Hybride Leichtbaustrukturen in Stahlblech-Leichtmetall Verbundguss N2 - Stahl-Leichtmetall-Hybride mit hohen Leistungspotentialen können heute wirtschaftlich abgebildet werden und eignen sich möglicherweise auch zum Einsatz in Fahrzeugkarosserien KW - Karosseriebau KW - Verbundguss KW - Stahlblech-Leichtmetall Verbundguss KW - Stahlblech-Leichtmetall-Hybride KW - Lightweight car body construction Y1 - 2006 ER - TY - CHAP A1 - Lao, B. A1 - Bührig-Polaczek, Andreas A1 - Röth, Thilo ED - Wielage, Bernhard T1 - Funktionsintegrierte Leichtbaustrukturen in gussintensiver Metall-Hybridbauweise T2 - Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz Y1 - 2011 SN - 978-3-00-033801-4 N1 - Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen ; 41 SP - 413 EP - 421 PB - Eigenverlag CY - Chemnitz ER - TY - CHAP A1 - Hoefling, J. A1 - Schirra, Julian A1 - Spohr, A. A1 - Schäfer, Daniel T1 - Induced drag computation with wake model schemes for highly non-planar wing systems T2 - Deutscher Luft- und Raumfahrtkongress 2013 : 10.9. - 12.9.2013, Stuttgart Y1 - 2013 SP - 1 EP - 10 PB - Dt. Ges. für Luft- und Raumfahrt CY - Bonn ER - TY - CHAP A1 - Peterson, Leif Arne A1 - Röth, Thilo A1 - Uibel, Thomas ED - Uibel, Thomas ED - Peterson, Leif Arne ED - Baumann, Marcus T1 - Holzwerkstoffe in Karosseriestrukturen T2 - Tagungsband Aachener Holzbautagung 2017 Y1 - 2017 SN - 2197-4489 SP - 34 EP - 45 ER - TY - CHAP A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the determination of harmonic propeller loads T2 - AIAA SCITECH 2023 Forum N2 - Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2404 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA ER - TY - CHAP A1 - Baader, Fabian A1 - Reiswich, M. A1 - Bartsch, M. A1 - Keller, D. A1 - Tiede, E. A1 - Keck, G. A1 - Demircian, A. A1 - Friedrich, M. A1 - Dachwald, Bernd A1 - Schüller, K. A1 - Lehmann, Raphael A1 - Chojetzki, R. A1 - Durand, C. A1 - Rapp, L. A1 - Kowalski, Julia A1 - Förstner, R. T1 - VIPER - Student research on extraterrestrical ice penetration technology T2 - Proceedings of the 2nd Symposium on Space Educational Activities N2 - Recent analysis of scientific data from Cassini and earth-based observations gave evidence for a global ocean under a surrounding solid ice shell on Saturn's moon Enceladus. Images of Enceladus' South Pole showed several fissures in the ice shell with plumes constantly exhausting frozen water particles, building up the E-Ring, one of the outer rings of Saturn. In this southern region of Enceladus, the ice shell is considered to be as thin as 2 km, about an order of magnitude thinner than on the rest of the moon. Under the ice shell, there is a global ocean consisting of liquid water. Scientists are discussing different approaches the possibilities of taking samples of water, i.e. by melting through the ice using a melting probe. FH Aachen UAS developed a prototype of maneuverable melting probe which can navigate through the ice that has already been tested successfully in a terrestrial environment. This means no atmosphere and or ambient pressure, low ice temperatures of around 100 to 150K (near the South Pole) and a very low gravity of 0,114 m/s^2 or 1100 μg. Two of these influencing measures are about to be investigated at FH Aachen UAS in 2017, low ice temperature and low ambient pressure below the triple point of water. Low gravity cannot be easily simulated inside a large experiment chamber, though. Numerical simulations of the melting process at RWTH Aachen however are showing a gravity dependence of melting behavior. Considering this aspect, VIPER provides a link between large-scale experimental simulations at FH Aachen UAS and numerical simulations at RWTH Aachen. To analyze the melting process, about 90 seconds of experiment time in reduced gravity and low ambient pressure is provided by the REXUS rocket. In this time frame, the melting speed and contact force between ice and probes are measured, as well as heating power and a two-dimensional array of ice temperatures. Additionally, visual and infrared cameras are used to observe the melting process. Y1 - 2018 SP - 1 EP - 6 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Borchers, Kai A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D. A1 - Lange, Caroline A1 - Maiwald, Volker A1 - Meß, Jan-Gerd A1 - Mikulz, Eugen A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Sasaki, Kaname A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Ceriotti, Matteo A1 - McInnes, Colin A1 - Peloni, Alessandro A1 - Biele, Jens A1 - Krause, Christian A1 - Dachwald, Bernd A1 - Hercik, David A1 - Lichtenheldt, Roy A1 - Wolff, Friederike A1 - Koncz, Alexander A1 - Pelivan, Ivanka A1 - Schmitz, Nicole A1 - Boden, Ralf A1 - Riemann, Johannes A1 - Seboldt, Wolfgang A1 - Wejmo, Elisabet A1 - Ziach, Christian A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Ruffer, Michael A1 - Cordero, Federico A1 - Tardivel, Simon T1 - Solar sails for planetary defense & high-energy missions T2 - IEEE Aerospace Conference Proceedings N2 - 20 years after the successful ground deployment test of a (20 m) 2 solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed `now-term' and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC Gossamer Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid's but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection. Y1 - 2019 U6 - https://doi.org/10.1109/AERO.2019.8741900 N1 - AERO 2019; Big Sky; United States; 2 March 2019 through 9 March 2019 SP - 1 EP - 21 ER -