TY - JOUR A1 - Deppe, Veronika Maria A1 - Bongaerts, Johannes A1 - O'Connell, Timothy A1 - Maurer, Karl-Heinz A1 - Meinhardt, Friedhelm T1 - Enzymatic deglycation of Amadori products in bacteria JF - Applied microbiology and biotechnology Y1 - 2011 SN - 1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print) VL - Vol. 90 IS - Iss. 2 SP - 399 EP - 406 PB - Springer CY - Berlin ER - TY - JOUR A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard T1 - Advances in solar tower technology JF - Wiley interdisciplinary reviews : Energy and Environment : WIREs Y1 - 2017 U6 - https://doi.org/10.1002/wene.217 SN - 2041-840X VL - 6 IS - 1 SP - 1 EP - 19 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion JF - Journal of Engineering for Gas Turbines and Power N2 - The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Y1 - 2018 U6 - https://doi.org/10.1115/1.4038882 SN - 0742-4795 N1 - Article number 081504; Paper No: GTP-17-1567 VL - 140 IS - 8 PB - ASME CY - New York, NY ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Improved Form Factor for Drag Estimation of Fuselages with Various Cross Sections JF - Journal of Aircraft N2 - The paper presents an aerodynamic investigation of 70 different streamlined bodies with fineness ratios ranging from 2 to 10. The bodies are chosen to idealize both unmanned and small manned aircraft fuselages and feature cross-sectional shapes that vary from circular to quadratic. The study focuses on friction and pressure drag in dependency of the individual body’s fineness ratio and cross section. The drag forces are normalized with the respective body’s wetted area to comply with an empirical drag estimation procedure. Although the friction drag coefficient then stays rather constant for all bodies, their pressure drag coefficients decrease with an increase in fineness ratio. Referring the pressure drag coefficient to the bodies’ cross-sectional areas shows a distinct pressure drag minimum at a fineness ratio of about three. The pressure drag of bodies with a quadratic cross section is generally higher than for bodies of revolution. The results are used to derive an improved form factor that can be employed in a classic empirical drag estimation method. The improved formulation takes both the fineness ratio and cross-sectional shape into account. It shows superior accuracy in estimating streamlined body drag when compared with experimental data and other form factor formulations of the literature. Y1 - 2020 U6 - https://doi.org/10.2514/1.C036032 SN - 1533-3868 SP - 1 EP - 13 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jossek, Ralf A1 - Bongaerts, Johannes A1 - Sprenger, Georg A. T1 - Characterization of a new feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase AroF of Escherichia coli JF - FEMS microbiology letters Y1 - 2001 SN - 1574-6968 VL - Vol. 202 IS - Iss. 1 SP - 145 EP - 148 ER - TY - JOUR A1 - Geier, Christian A1 - Lehnertz, Klaus A1 - Bialonski, Stephan T1 - Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing JF - Frontiers in Human Neuroscience Y1 - 2015 U6 - https://doi.org/10.3389/fnhum.2015.00462 SN - 1662-5161 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Wilming, Anja A1 - Begemann, Jens A1 - Kuhne, Stefan A1 - Regestein, Lars A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Maurer, Karl-Heinz A1 - Büchs, Jochen T1 - Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations JF - Biochemical engineering journal Y1 - 2013 SN - 1873-295X (E-Journal); 1369-703X (Print) VL - Vol. 73 SP - 29 EP - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Alexopoulos, Spiros T1 - Simulation model for the transient process behaviour of solar aluminium recycling in a rotary kiln JF - Applied Thermal Engineering Y1 - 2015 U6 - https://doi.org/10.1016/j.applthermaleng.2015.01.007 SN - 1359-4311 N1 - Autor im Original: Spiridon O. Alexopoulos VL - 78 SP - 387 EP - 396 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - About the wing and whirl flutter of a slender wing–propeller system JF - Journal of Aircraft N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing–propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing–propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing–propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis. Y1 - 2024 U6 - https://doi.org/10.2514/1.C037542 SN - 1533-3868 SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - https://doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Orzada, Stephan A1 - Flöser, Martina A1 - Rietsch, Stefan H. G. A1 - Quick, Harald H. A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T JF - NMR in Biomedicine N2 - The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit ele- ments. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual obser- vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the devia- tion from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe- cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homoge- neous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study. KW - body imaging at UHF MRI KW - integrated transmit coil arrays KW - VOP compression Y1 - 2021 U6 - https://doi.org/10.1002/nbm.4515 SN - 0952-3480 (ISSN) SN - 1099-1492 (eISSN) VL - 34 IS - 7 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Chwallek, Constanze A1 - Nawrath, Lara A1 - Krastina, Anzelika A1 - Bruksle, Ieva T1 - Supportive research on sustainable entrepreneurship and business practices JF - SECA Sustainable Entrepreneurship for Climate Action Y1 - 2024 SN - 978-952-316-514-4 (pdf) SN - 2954-1654 (on-line publication) IS - 3 PB - Lapland University of Applied Sciences Ltd CY - Rovaniemi ER - TY - JOUR A1 - Wild, Dominik A1 - Schrezenmeier, Johannes A1 - Czupalla, Markus A1 - Förstner, Roger T1 - Thermal Characterization of additive manufactured Integral Structures for Phase Change Applications JF - 2020 International Conference on Environmental Systems N2 - “Infused Thermal Solutions” (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, by using phase change material (PCM) in combination with lattice – both embedded into an additive manufactured integral structure. The technology is currently under development. This paper presents the results of the thermal property measurements performed on additive manufactured ITS breadboards. Within the breadboard campaigns key characteristics of the additive manufactured specimens were derived: Mechanical parameters: specimen impermeability, minimum wall thickness, lattice structure, subsequent heat treatment. Thermal properties: thermo-optical surface properties of the additive manufactured raw material, thermal conductivity and specific heat capacity measurements. As a conclusion the paper introduces an overview of potential ITS hardware applications, expected to increase the thermal performance. Y1 - 2020 PB - Texas Tech University ER - TY - JOUR A1 - Schopen, Oliver A1 - Narayan, Sriram A1 - Beckmann, Marvin A1 - Najmi, Aezid-Ul-Hassan A1 - Esch, Thomas A1 - Shabani, Bahman T1 - An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method JF - International Journal of Hydrogen Energy N2 - In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 % and the cathode side charge transfer resistance decreases by 23 % after increasing the humidity from 30 % to 85 %, while the results of static operation also show an increase of ∼2.2 % in the voltage output after increasing the relative humidity from 30 % to 85 %. In dynamic operation, visible drying effects occur at < 50 % relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators. KW - PEM fuel cell KW - Electrochemical impedance spectroscopy KW - Relative air humidity KW - Active humidity control KW - Impedance analysis Y1 - 2024 SN - 0360-3199 (print) U6 - https://doi.org/10.1016/j.ijhydene.2024.01.218 SN - 1879-3487 (online) VL - 58 IS - 8 SP - 1302 EP - 1315 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Uysal, Karya A1 - Creutz, Till A1 - Firat, Ipek Seda A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments JF - Polymers N2 - Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3–4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications. Y1 - 2022 SN - 2073-4360 VL - 14 IS - 11 SP - 2213 PB - MDPI CY - Basel ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Kurulgan demirci, Eylem A1 - Fırat, Ipek Seda A1 - Oflaz, Hakan A1 - Artmann, Gerhard T1 - Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers JF - SHOCK KW - Septic cardiomyopathy KW - LPS KW - cardiomyocyte biomechanics KW - CellDrum KW - actin cytoskeleton Y1 - 2021 U6 - https://doi.org/10.1097/SHK.0000000000001845 SN - 1540-0514 PB - Wolters Kluwer CY - Köln ER - TY - JOUR A1 - Kowalewski, Paul A1 - Bragard, Michael A1 - Hüning, Felix A1 - De Doncker, Rik W. T1 - An inexpensive Wiegand-sensor-based rotary encoder without rotating magnets for use in electrical drives JF - IEEE Transactions on Instrumentation and Measurement N2 - This paper introduces an inexpensive Wiegand-sensor-based rotary encoder that avoids rotating magnets and is suitable for electrical-drive applications. So far, Wiegand-sensor-based encoders usually include a magnetic pole wheel with rotating permanent magnets. These encoders combine the disadvantages of an increased magnet demand and a limited maximal speed due to the centripetal force acting on the rotating magnets. The proposed approach reduces the total demand of permanent magnets drastically. Moreover, the rotating part is manufacturable from a single piece of steel, which makes it very robust and cheap. This work presents the theoretical operating principle of the proposed approach and validates its benefits on a hardware prototype. The presented proof-of-concept prototype achieves a mechanical resolution of 4.5 ° by using only 4 permanent magnets, 2Wiegand sensors and a rotating steel gear wheel with 20 teeth. KW - Rotary encoder KW - Wiegand sensor Y1 - 2023 U6 - https://doi.org/10.1109/TIM.2023.3326166 SN - 0018-9456 (Print) SN - 1557-9662 (Online) VL - 72 SP - 10 Seiten PB - IEEE CY - New York ER - TY - JOUR A1 - Seifarth, Volker A1 - Grosse, Joachim O. A1 - Grossmann, Matthias A1 - Janke, Heinz Peter A1 - Arndt, Patrick A1 - Koch, Sabine A1 - Epple, Matthias A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation JF - Journal of Biomaterials Applications Y1 - 2017 U6 - https://doi.org/10.1177/0885328217723178 SN - 1530-8022 VL - 32 IS - 3 SP - 321 EP - 330 PB - Sage CY - London ER - TY - JOUR A1 - Seifarth, Volker A1 - Goßmann, Matthias A1 - Grosse, J. O. A1 - Becker, C. A1 - Heschel, I. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds JF - Urologia Internationalis Y1 - 2015 U6 - https://doi.org/10.1159/000368419 SN - 0042-1138 VL - 2015 IS - 95 SP - 106 EP - 113 PB - Karger CY - Basel ER -