TY - JOUR A1 - Meliß, Michael A1 - Neskakis, A. A1 - Plettner-Marliani, J. A1 - Lange, C. A1 - Hövelmann, A. A1 - Schumacher, J. T1 - Waste water recycling supplied by renewable energies : basic conditions and possible treatment technologies JF - Renewable energy. Vol. 14 (1998), iss. 1-4. 6th Arab International Solar Energy Conference: Bringing Solar Energy into the Daylight, Muscat, Sultanate of Oman, 29.03.-01.04.1998 Y1 - 1998 SN - 1879-0682 (E-Book); 0960-1481 (Print) SP - 325 EP - 331 ER - TY - JOUR A1 - Wemhöner, Carsten A1 - Hafner, Bernd A1 - Schwarzer, Klemens T1 - Simulation of solar thermal systems with CARNOT blockset in the environment MATLAB-Simulink Y1 - 2000 SP - 1 EP - 6 ER - TY - JOUR A1 - Meliß, Michael A1 - Späte, Frank T1 - The solar heating system with seasonal storage at the Solar-Campus Jülich JF - Solar energy. Vol. 69 (2000), iss. 6 Y1 - 2000 SN - 0038-092X SP - 525 EP - 533 ER - TY - JOUR A1 - Velraj, R. A1 - Seeniraj, R. V. A1 - Hafner, B. A1 - Faber, Christian A1 - Schwarzer, Klemens T1 - Heat transfer enhancement in a latent heat storage system JF - Solar energy. Vol. 65, iss. 3 Y1 - 1999 SN - 0038-092X SP - 171 EP - 180 ER - TY - JOUR A1 - Schwarzer, Klemens A1 - Vieira da Silva, Maria Eugenia A1 - Schwarzer, Tarik T1 - Field results in Namibia and Brazil of the new solar desalination system for decentralised drinking water production JF - Desalination and water treatment. Vol. 31 (2011), iss. 1-3: selected papers presented at EuroMed 2010 — Desalination for Clean Water and Energy: Cooperation among Mediterranean Countries of Europe and MENA Region, 3–7 October 2010, Tel Aviv, Israel Y1 - 2011 SP - 379 EP - 386 ER - TY - JOUR A1 - Göttsche, Joachim T1 - Eldorado summer schools JF - Progress in solar energy education. 3 (1994) Y1 - 1994 SN - 1018-5607 SP - 31 EP - 33 ER - TY - JOUR A1 - Göttsche, Joachim A1 - Hove, T. T1 - Mapping global, diffuse and beam solar radiation over Zimbabwe / T. Hove ; J. Göttsche JF - Renewable energy. 18 (1999), H. 4 Y1 - 1999 SN - 1879-0682 SP - 535 EP - 556 ER - TY - JOUR A1 - Göttsche, Joachim A1 - Goetzberger, Adolf A1 - Dengler, J. A1 - Rommel, M. (u.a.) T1 - A new transparently insulated, bifacially irradiated solar flat-plate collector / A. Goetzberger ; J. Dengler ; M. Rommel ; J. Göttsche ; V. Wittwer JF - Solar energy. 49 (1992), H. 5 Y1 - 1992 SN - 0038-092X SP - 403 EP - 411 ER - TY - JOUR A1 - Agrafiotis, Christos C. A1 - Mavroidis, Ilias A1 - Konstandopoulos, Athansios G. A1 - Hoffschmidt, Bernhard A1 - Stobbe, Per A1 - Romero, Manuel A1 - Fernandez-Quero, Valerio T1 - Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation JF - Solar energy materials and solar cells Y1 - 2007 SN - 1879-3398 (E-Journal); 0927-0248 (Print) VL - Vol. 91 IS - Iss. 6 SP - 474 EP - 488 ER - TY - JOUR A1 - Reisgen, Uwe A1 - Schleser, Markus A1 - Abdurakhmanov, Aydemir A1 - Turichin, Gleb A1 - Valdaitseva, Elena A1 - Bach, Friedrich-Wilhelm A1 - Hassel, Thomas A1 - Beniyashi, Alexander T1 - Investigation of factors influencing the formation of weld defects in non-vacuum electron beam welding JF - The Paton welding journal N2 - The influence of welding condition parameters and properties of material on formation of defects, such as humping and undercuts, in non-vacuum electron beam welding was investigated. The influence of separate welding parameters on the quality of welds was determined. Y1 - 2012 SN - 0957-798X VL - 2012 IS - 2 SP - 11 EP - 18 PB - Paton Publishing House CY - Kiev ER - TY - JOUR A1 - Vieira da Silva, Maria Eugenia A1 - Schwarzer, Klemens A1 - Hoffschmidt, Bernhard A1 - Pinheiro Rodrigues, Frederico A1 - Schwarzer, Tarik A1 - Costa Rocha, Paulo Alexandre T1 - Mass transfer correlation for evaporation–condensation thermal process in the range of 70 °C–95 °C JF - Renewable energy Y1 - 2013 SN - 1879-0682 (E-Journal); 0960-1481 (Print) VL - Vol. 53 SP - 174 EP - 179 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hagenkamp, Markus A1 - Blanke, Tobias A1 - Döring, Bernd T1 - Thermoelectric building temperature control: a potential assessment JF - International Journal of Energy and Environmental Engineering N2 - This study focuses on thermoelectric elements (TEE) as an alternative for room temperature control. TEE are semi-conductor devices that can provide heating and cooling via a heat pump effect without direct noise emissions and no refrigerant use. An efficiency evaluation of the optimal operating mode is carried out for different numbers of TEE, ambient temperatures, and heating loads. The influence of an additional heat recovery unit on system efficiency and an unevenly distributed heating demand are examined. The results show that TEE can provide heat at a coefficient of performance (COP) greater than one especially for small heating demands and high ambient temperatures. The efficiency increases with the number of elements in the system and is subject to economies of scale. The best COP exceeds six at optimal operating conditions. An additional heat recovery unit proves beneficial for low ambient temperatures and systems with few TEE. It makes COPs above one possible at ambient temperatures below 0 ∘C. The effect increases efficiency by maximal 0.81 (from 1.90 to 2.71) at ambient temperature 5 K below room temperature and heating demand Q˙h=100W but is subject to diseconomies of scale. Thermoelectric technology is a valuable option for electricity-based heat supply and can provide cooling and ventilation functions. A careful system design as well as an additional heat recovery unit significantly benefits the performance. This makes TEE superior to direct current heating systems and competitive to heat pumps for small scale applications with focus on avoiding noise and harmful refrigerants. Y1 - 2021 U6 - https://doi.org/10.1007/s40095-021-00424-x N1 - Corresponding author: Markus Hagenkamp VL - 13 SP - 241 EP - 254 PB - Springer CY - Berlin ER - TY - JOUR A1 - Wolisz, Henryk A1 - Schütz, Thomas A1 - Blanke, Tobias A1 - Hagenkamp, Markus A1 - Kohrn, Markus A1 - Wesseling, Mark A1 - Müller, Dirk T1 - Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets JF - Energy Y1 - 2017 U6 - https://doi.org/10.1016/j.energy.2017.06.025 VL - 137 SP - 715 EP - 728 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Blanke, Tobias A1 - Hagenkamp, Markus A1 - Döring, Bernd A1 - Göttsche, Joachim A1 - Reger, Vitali A1 - Kuhnhenne, Markus T1 - Net-exergetic, hydraulic and thermal optimization of coaxial heat exchangers using fixed flow conditions instead of fixed flow rates JF - Geothermal Energy N2 - Previous studies optimized the dimensions of coaxial heat exchangers using constant mass fow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar fow types. In contrast, in this study, fow conditions in the circular ring are kept constant (a set of fxed Reynolds numbers) during optimization. This approach ensures fxed fow conditions and prevents inappropriately high or low mass fow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic efort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass fow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefcients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy diference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy fux and hydraulic efort. The Reynolds number in the circular ring is instead of the mass fow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar fow and 60% for turbulent fow scenarios. Net-exergetic optimization shows a predominant infuence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the fow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics. Y1 - 2021 U6 - https://doi.org/10.1186/s40517-021-00201-3 SN - 2195-9706 N1 - Corresponding author: Tobias Blanke VL - 9 IS - Article number: 19 PB - Springer CY - Berlin ER - TY - JOUR A1 - Göttsche, Joachim A1 - Schwarzer, Klemens A1 - Röther, S. A1 - Jellinghaus, Sabine T1 - Efficient daylighting, heating and shading with rooflight heliostats JF - Conference Internationale Energie Solaire et Batiment Y1 - 2009 SP - 243 EP - 248 PB - EPFL CY - Lausanne ER - TY - JOUR A1 - Kronhardt, Valentina A1 - Alexopoulos, Spiros A1 - Reißel, Martin A1 - Sattler, Johannes Christoph A1 - Hoffschmidt, Bernhard A1 - Hänel, Matthias A1 - Doerbeck, Till T1 - High-temperature thermal storage system for solar tower power plants with open-volumetric air receiver simulation and energy balancing of a discretized model JF - Energy procedia N2 - This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants. Y1 - 2014 U6 - https://doi.org/10.1016/j.egypro.2014.03.094 SN - 1876-6102 (E-Journal) ; 1876-6102 (Print) VL - 49 SP - 870 EP - 877 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Göttsche, Joachim A1 - Gabrysch, K. A1 - Schiller, H. A1 - Kauert, B. A1 - Schwarzer, Klemens T1 - Energetic Effects of demand – controlled ventilation retrofitting in a biochemical laboratory building JF - AIVC publications [Elektronische Ressource] / Air Infiltration and Ventilation Centre Y1 - 2004 N1 - AIVC Conference <25, Prague, 2004> SP - 50 PB - INIVE EEIG CY - Brussels ER - TY - JOUR A1 - Göttsche, Joachim A1 - Reilly, S. A1 - Wittwer, Volker T1 - Advanced window systems and building energy performance / S. Reilly ; J. Göttsche ; V. Wittwer JF - Solar World Congress, 1991 : proceedings of the biennial congress of the International Solar Energy Society, Denver, Colorado, USA, 19-23 August 1991 / ed. by M. E. Arden ... Y1 - 1991 SN - 0-08-041690-X SP - 3211 EP - 3216 PB - Pergamon Press CY - Oxford [u.a.] ER - TY - JOUR A1 - Dersch, Jürgen A1 - Geyer, Michael A1 - Herrmann, Ulf A1 - Jones, Scott A. A1 - Kelly, Bruce A1 - Kistner, Rainer A1 - Ortmanns, Winfried A1 - Pitz-Paal, Robert A1 - Price, Henry T1 - Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems JF - Energy : the international journal Y1 - 2004 U6 - https://doi.org/10.1016/S0360-5442(03)00199-3 SN - 0360-5442 N1 - SolarPACES 2002, Zürich, Switzerland, 4–6 September 2002 VL - 29 IS - 5-6 (Special Issue SolarPaces) SP - 947 EP - 959 ER - TY - JOUR A1 - Peere, Wouter A1 - Blanke, Tobias ED - Vernon, Chris T1 - GHEtool: An open-source tool for borefield sizing in Python JF - Journal of Open Source Software N2 - GHEtool is a Python package that contains all the functionalities needed to deal with borefield design. It is developed for both researchers and practitioners. The core of this package is the automated sizing of borefield under different conditions. The sizing of a borefield is typically slow due to the high complexity of the mathematical background. Because this tool has a lot of precalculated data, GHEtool can size a borefield in the order of tenths of milliseconds. This sizing typically takes the order of minutes. Therefore, this tool is suited for being implemented in typical workflows where iterations are required. GHEtool also comes with a graphical user interface (GUI). This GUI is prebuilt as an exe-file because this provides access to all the functionalities without coding. A setup to install the GUI at the user-defined place is also implemented and available at: https://www.mech.kuleuven.be/en/tme/research/thermal_systems/tools/ghetool. KW - geothermal KW - energy KW - borefields KW - sizing Y1 - 2022 U6 - https://doi.org/10.21105/joss.04406 SN - 2475-9066 VL - 7 IS - 76 SP - 1 EP - 4, 4406 ER -