TY - CHAP A1 - Meskouris, Konstantin A1 - Butenweg, Christoph A1 - Mistler, Michael A1 - Kuhlmann, Wolfram T1 - Seismic behaviour of historic masonry buildings T2 - 7th National Congress on Mechanics : Chania, Crete, June 24 - 26, 2004 ; proceedings / ed. A. Kounadis .... Y1 - 2004 SP - 47 EP - 49 PB - Hellenic Society for Theoretical and Applied Mechanics CY - Chania ER - TY - CHAP A1 - Eggert, Mathias A1 - Weber, Jannik T1 - What drives the purchase decision in Instagram stores? T2 - ECIS 2023 Research Papers N2 - The popularity of social media and particularly Instagram grows steadily. People use the different platforms to share pictures as well as videos and to communicate with friends. The potential of social media platforms is also being used for marketing purposes and for selling products. While for Facebook and other online social media platforms the purchase decision factors are investigated several times, Instagram stores remain mainly unattended so far. The present research work closes this gap and sheds light into decisive factors for purchasing products offered in Instagram stores. A theoretical research model, which contains selected constructs that are assumed to have a significant influence on Instagram user´s purchase intention, is developed. The hypotheses are evaluated by applying structural equation modelling on survey data containing 127 relevant participants. The results of the study reveal that ‘trust’, ‘personal recommendation’, and ‘usability’ significantly influences user’s buying intention in Instagram stores. KW - Instagram store KW - shopping behavior KW - purchase factor KW - PLS KW - structural equation model Y1 - 2023 N1 - ECIS 2023, European Conference on Information Systems, Kristiansand, Norway, June 11.-16. SP - 1 EP - 17 ER - TY - CHAP A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays T2 - Brick and Block Masonry - From Historical to Sustainable Masonry. Proceedings of the 17th International Brick/Block Masonry Conference N2 - Reinforced concrete (RC) structures with masonry infills are widely used for several types of buildings all over the world. However, it is well known that traditional masonry infills constructed with rigid contact to the surrounding RC frame performed rather poor in past earthquakes. Masonry infills showed severe in-plane damages and failed in many cases under out-of-plane seismic loading. As the undesired interactions between frames and infills changes the load transfer on building level, complete collapses of buildings were observed. A possible solution is uncoupling of masonry infills to the frame to reduce the infill contribution activated by the frame deformation under horizontal loading. The paper presents numerical simulations on RC frames equipped with the innovative decoupling system INODIS. The system was developed within the European project INSYSME and allows an effective uncoupling of frame and infill. The simulations are carried out with a micro-modelling approach, which is able to predict the complex nonlinear behaviour resulting from the different materials and their interaction. Each brick is modelled individually and connected taking into account nonlinearity of a brick mortar interface. The calibration of the model is based on small specimen tests and experimental results for one bay one storey frame are used for the validation. The validated model is further used for parametric studies on two storey and two bay infilled frames. The response and change of the structural stiffness are analysed and compared to the traditionally infilled frame. The results confirm the effectiveness of the INODIS system with less damage and relatively low contribution of the infill at high drift levels. In contrast to the uncoupled system configurations, traditionally infilled frames experienced brittle failure at rather low drift levels. Y1 - 2020 U6 - https://doi.org/10.1201/9781003098508-72 N1 - 17th International Brick/Block Masonry Conference (17thIB2MaC 2020), July 5-8, 2020, Kraków, Poland SP - 1 EP - 7 PB - CRC Press CY - London ER - TY - CHAP A1 - Michel, Philipp A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Soil-dependent earthquake spectra in the analysis of liquid-storage-tanks on compliant soil T2 - Seismic design of industrial facilities 2020 N2 - A further development of the Added-Mass-Method allows the combined representation of the effects of both soil-structure-interaction and fluid-structure interaction on a liquid-filled-tank in one model. This results in a practical method for describing the dynamic fluid pressure on the tank shell during joint movement. The fluid pressure is calculated on the basis of the tank's eigenform and the earthquake acceleration and represented by additional masses on the shell. The bearing on compliant ground is represented by replacement springs, which are calculated dependent on the local soil composition. The influence of the shear modulus of the compliant soil is clearly visible in the pressure curves and the stress distribution in the shell. The acceleration spectra are also dependent on soil stiffness. According to Eurocode-8 the acceleration spectra are determined for fixed soil-classes, instead of calculating the accelerations for each site in direct dependence on the soil composition. This leads to unrealistic sudden changes in the system's response. Therefore, earthquake spectra are calculated for different soil models in direct dependence of the shear modulus. Thus, both the acceleration spectra and the replacement springs match the soil composition. This enables a reasonable and consistent calculation of the system response for the actual conditions at each site. Y1 - 2020 SN - 978-3-86359-729-0 N1 - 2nd International Conference on Seismic Design of Industrial Facilities (Aachen, Germany, March 4-5, 2020) SP - 245 EP - 254 PB - Apprimus Verlag CY - Aachen ER - TY - CHAP A1 - Markinkovic, Marko A1 - Butenweg, Christoph A1 - Pavese, A. A1 - Lanese, I. A1 - Hoffmeister, B. A1 - Pinkawa, M. A1 - Vulcu, C. A1 - Bursi, O. A1 - Nardin, C. A1 - Paolacci, F. A1 - Quinci, G. A1 - Fragiadakis, M. A1 - Weber, F. A1 - Huber, P. A1 - Renault, P. A1 - Gündel, M. A1 - Dyke, S. A1 - Ciucci, M. A1 - Marino, A. T1 - Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests T2 - Seismic design of industrial facilities 2020 Y1 - 2020 SN - 978-3-86359-729-0 N1 - 2nd International Conference on Seismic Design of Industrial Facilities (Aachen, Germany, March 4-5, 2020) SP - 159 EP - 172 PB - Apprimus Verlag CY - Aachen ER - TY - CHAP A1 - Cacciatore, Pamela A1 - Butenweg, Christoph T1 - Seismic safety of cylindrical granular material steel silos under seismic loading T2 - Seismic design of industrial facilities 2020 Y1 - 2020 SN - 978-3-86359-729-0 N1 - 2nd International Conference on Seismic Design of Industrial Facilities (Aachen, Germany, March 4-5, 2020) SP - 231 EP - 244 PB - Apprimus Verlag CY - Aachen ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Hercik, D. A1 - Herique, A. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin R. A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettenmeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Responsive exploration and asteroid characterization through integrated solar sail and lander development using small spacecraft technologies T2 - IAA Planetary Defense Conference N2 - In parallel to the evolution of the Planetary Defense Conference, the exploration of small solar system bodies has advanced from fast fly-bys on the sidelines of missions to the planets to the implementation of dedicated sample-return and in-situ analysis missions. Spacecraft of all sizes have landed, touch-and-go sampled, been gently beached, or impacted at hypervelocity on asteroid and comet surfaces. More have flown by close enough to image their surfaces in detail or sample their immediate environment, often as part of an extended or re-purposed mission. And finally, full-scale planetary defense experiment missions are in the making. Highly efficient low-thrust propulsion is increasingly applied beyond commercial use also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another development in the same years is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities. The on-going NASA OSIRIS-REx and JAXA HAYABUSA2 missions exemplify the trend as well as the upcoming NEA SCOUT mission or the landers MINERVA-II and MASCOT recently deployed on Ryugu. We outline likely as well as possible and efficient routes of continuation of all these developments towards a propellant-less and highly efficient class of spacecraft for small solar system body exploration: small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules, for all asteroid user communities –planetary science, planetary defence, and in-situ resource utilization. This projection builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)² solar sail at DLR Cologne and in the 20 years since. It draws on the background of extensive trajectory optimization studies, the qualified technology of the DLR GOSSAMER-1 deployment demonstrator, and the MASCOT asteroid lander. These enable ‘now-term’ as well as near-term hardware solutions, and thus responsive fast-paced development. Mission types directly applicable to planetary defense include: single and Multiple NEA Rendezvous ((M)NR) for mitigation precursor, target monitoring and deflection follow-up tasks; sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation; and deployable membrane based methods to modify the asteroid’s properties or interact with it. The DLR-ESTEC GOSSAMER Roadmap initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery which demonstrate the capability of near-term solar sails to achieve NEA rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. For those mission types using separable payloads, such as SPO, (M)NR and RKI, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. These are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms. Y1 - 2019 N1 - Conference: IAA Planetary Defense ConferenceAt: Washington DC, USA 29.04-03.05.2019 ER - TY - CHAP A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the determination of harmonic propeller loads T2 - AIAA SCITECH 2023 Forum N2 - Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2404 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA ER - TY - CHAP A1 - Dachwald, Bernd T1 - Global optimization of low-thrust space missions using evolutionary neurocontrol T2 - Proceedings of the international workshop on global optimization N2 - Low-thrust space propulsion systems enable flexible high-energy deep space missions, but the design and optimization of the interplanetary transfer trajectory is usually difficult. It involves much experience and expert knowledge because the convergence behavior of traditional local trajectory optimization methods depends strongly on an adequate initial guess. Within this extended abstract, evolutionary neurocontrol, a method that fuses artificial neural networks and evolutionary algorithms, is proposed as a smart global method for low-thrust trajectory optimization. It does not require an initial guess. The implementation of evolutionary neurocontrol is detailed and its performance is shown for an exemplary mission. KW - Evolutionary Neurocontrol KW - Spacecraft Trajectory Optimization KW - Low-Thrust Propulsion Y1 - 2005 SP - 85 EP - 90 ER - TY - CHAP A1 - Schartner, Karl-Heinz A1 - Loeb, H. W. A1 - Dachwald, Bernd A1 - Ohndorf, Andreas T1 - Perspectives of electric propulsion for outer planetary and deep space missions T2 - European Planetary Science Congress 2009 N2 - Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low–thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3]. Y1 - 2009 N1 - European Planetary Science Congress 2009, 13-18 September, Potsdam, Germany SP - 416 EP - 416 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Riemann, Johannes A1 - Spröwitz, Tom A1 - Tardivel, Simon T1 - Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization T2 - 5th IAA Planetary Defense Conference KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - asteroid sample return Y1 - 2017 N1 - 5th IAA Planetary Defense Conference – PDC 2017 15-19 May 2017, Tokyo, Japan ER - TY - CHAP A1 - Dachwald, Bernd T1 - Solar sail performance requirements for missions to the outer solar system and beyond T2 - 55th International Astronautical Congress 2004 N2 - Solar sails enable missions to the outer solar system and beyond, although the solar radiation pressure decreases with the square of solar distance. For such missions, the solar sail may gain a large amount of energy by first making one or more close approaches to the sun. Within this paper, optimal trajectories for solar sail missions to the outer planets and into near interstellar space (200 AU) are presented. Thereby, it is shown that even near/medium-term solar sails with relatively moderate performance allow reasonable transfer times to the boundaries of the solar system. Y1 - 2004 U6 - https://doi.org/10.2514/6.IAC-04-S.P.11 N1 - 55th International Astronautical Congress 2004 - Vancouver, Canada SP - 1 EP - 9 ER - TY - CHAP A1 - Bung, Daniel Bernhard T1 - A comparative study of self-aerated stepped spillway and smooth invert chute flow: the effect of step-induced macro roughness T2 - 5th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering : CG JOINT 2010 Y1 - 2010 SN - 978-7-5618-3671-2 SP - 451 EP - 456 PB - Univ. Press CY - Tianjin ER - TY - CHAP A1 - Tomić, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Correia, António A. A1 - Candeias, Paulo X. A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Seismic testing of adjacent interacting masonry structures T2 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020) N2 - In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the façades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the façade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25%, 50%, 75% and 100% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test Y1 - 2020 U6 - https://doi.org/10.23967/sahc.2021.234 N1 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2021), September 29-30 and October 1, 2021, online N1 - (SAHC 2020 ursprünglich geplant für September 2020 in Barelona - verschoben wg. Covid-Pandemie) SP - 1 EP - 12 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - CHAP A1 - Anic, Filip A1 - Penava, Davorin A1 - Guljas, Ivica A1 - Sarhosis, Vasilis A1 - Abrahamczyk, Lars A1 - Butenweg, Christoph T1 - The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10168 SP - 1 EP - 11 ER - TY - CHAP A1 - Zähl, Philipp M. A1 - Biewendt, Marcel A1 - Wolf, Martin R. A1 - Eggert, Mathias T1 - Requirements for competence developing games in the environment of SE Competence Development T2 - AKWI-Tagungsband zur 35. AKWI-Jahrestagung N2 - Many of today’s factors make software development more and more complex, such as time pressure, new technologies, IT security risks, et cetera. Thus, a good preparation of current as well as future software developers in terms of a good software engineering education becomes progressively important. As current research shows, Competence Developing Games (CDGs) and Serious Games can offer a potential solution. This paper identifies the necessary requirements for CDGs to be conducive in principle, but especially in software engineering (SE) education. For this purpose, the current state of research was summarized in the context of a literature review. Afterwards, some of the identified requirements as well as some additional requirements were evaluated by a survey in terms of subjective relevance. KW - software engineering KW - requirements KW - competence developing games KW - systematic literature review Y1 - 2022 SN - 978-3-95545-409-8 U6 - https://doi.org/10.30844/AKWI_2022_05 N1 - Tagungsband zur 35. Jahrestagung des Arbeitskreises Wirtschaftsinformatik an Hochschulen für Angewandte Wissenschaften im deutschsprachigen Raum (AKWI), 11.09. bis 13.09.2022, Hochschule für Technik und Wirtschaft Berlin (HTW Berlin) und Hochschule für Wirtschaft und Recht Berlin (HWR Berlin) SP - 73 EP - 88 PB - GITO CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Rajan, Sreelakshmy T1 - Design and construction techniques of AAC masonry buildings in earthquakes regions T2 - 10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014 Y1 - 2014 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Biele, Jens A1 - Dachwald, Bernd A1 - Grimm, Christian A1 - Lange, Caroline A1 - Ulamec, Stephan T1 - Small spacecraft for small solar system body science, planetary defence and applications T2 - IEEE Aerospace Conference 2016 N2 - Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a ‘pure’ science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA’s ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact & Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL’s DART (Double Asteroid Redirection Test) and ESA’s AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART. Y1 - 2016 SP - 1 EP - 20 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Cordero, Frederico A1 - Dachwald, Bernd A1 - Koncz, Alexander A1 - Krause, Christian A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Quantius, Dominik A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seefeldt, Patric A1 - Tóth, Norbert A1 - Wejmo, Elisabet T1 - From Sail to Soil – Getting Sailcraft Out of the Harbour on a Visit to One of Earth’s Nearest Neighbours T2 - 4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy Y1 - 2015 ER -