TY - CHAP A1 - Adams, Moritz A1 - Losekamm, Martin J. A1 - Czupalla, Markus T1 - Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station T2 - International Conference on Environmental Systems Y1 - 2020 N1 - 2020 International Conference on Environmental Systems, 12. Juli 2020 – 16. Juli 2020, Lissabon SP - 1 EP - 10 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft T2 - AIAA Scitech 2020 Forum N2 - As battery technologies advance, electric propulsion concepts are on the edge of disrupting aviation markets. However, until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial-hybrid-, parallel-hybrid-, fully-electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This paper provides insight into some factors that drive a new design towards either conventional or hybrid propulsion systems. General aviation aircraft, VTOL air taxis, transport aircraft, and UAVs are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their take-off mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints (e.g. take-off, climb). However, if the propulsion system is sized by a continuous power requirement (e.g. cruise), hybrid-electric systems offer hardly any benefit. Y1 - 2020 U6 - https://doi.org/10.2514/6.2020-1502 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Finger, Felix A1 - de Vries, Reynard A1 - Vos, Roelof A1 - Braun, Carsten A1 - Bil, Cees T1 - A comparison of hybrid-electric aircraft sizing methods T2 - AIAA Scitech 2020 Forum N2 - The number of case studies focusing on hybrid-electric aircraft is steadily increasing, since these configurations are thought to lead to lower operating costs and environmental impact than traditional aircraft. However, due to the lack of reference data of actual hybrid-electric aircraft, in most cases, the design tools and results are difficult to validate. In this paper, two independently developed approaches for hybrid-electric conceptual aircraft design are compared. An existing 19-seat commuter aircraft is selected as the conventional baseline, and both design tools are used to size that aircraft. The aircraft is then re-sized under consideration of hybrid-electric propulsion technology. This is performed for parallel, serial, and fully-electric powertrain architectures. Finally, sensitivity studies are conducted to assess the validity of the basic assumptions and approaches regarding the design of hybrid-electric aircraft. Both methods are found to predict the maximum take-off mass (MTOM) of the reference aircraft with less than 4% error. The MTOM and payload-range energy efficiency of various (hybrid-) electric configurations are predicted with a maximum difference of approximately 2% and 5%, respectively. The results of this study confirm a correct formulation and implementation of the two design methods, and the data obtained can be used by researchers to benchmark and validate their design tools. Y1 - 2020 U6 - https://doi.org/10.2514/6.2020-1006 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Geiben, Benedikt A1 - Götten, Falk A1 - Havermann, Marc T1 - Aerodynamic analysis of a winged sub-orbital spaceplane N2 - This paper primarily presents an aerodynamic CFD analysis of a winged spaceplane geometry based on the Japanese Space Walker proposal. StarCCM was used to calculate aerodynamic coefficients for a typical space flight trajectory including super-, trans- and subsonic Mach numbers and two angles of attack. Since the solution of the RANS equations in such supersonic flight regimes is still computationally expensive, inviscid Euler simulations can principally lead to a significant reduction in computational effort. The impact on accuracy of aerodynamic properties is further analysed by comparing both methods for different flight regimes up to a Mach number of 4. Y1 - 2020 U6 - https://doi.org/10.25967/530170 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online PB - DGLR CY - Bonn ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization T2 - CEAS Aeronautical Journal N2 - The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used on surveillance, reconnaissance, and search and rescue missions. The aircraft are simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV's parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft's total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft. Y1 - 2020 U6 - https://doi.org/10.1007/s13272-021-00522-w SN - 1869-5590 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online VL - 12 SP - 589 EP - 603 PB - Springer CY - Wien ER - TY - CHAP A1 - Haugg, Albert Thomas A1 - Kreyer, Jörg A1 - Kemper, Hans A1 - Hatesuer, Katerina A1 - Esch, Thomas T1 - Heat exchanger for ORC. adaptability and optimisation potentials T2 - IIR International Rankine 2020 Conference N2 - The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine’s cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine. Y1 - 2020 U6 - https://doi.org/10.18462/iir.rankine.2020.1224 N1 - IIR International Rankine 2020 Conference - Heating, Cooling, Power Generation. Glasgow, 2020. ER - TY - CHAP A1 - Hippe, Jonas A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 N2 - This paper presents an approach for UAV propulsion system qualification and validation on the example of FH Aachen's 25 kg cargo UAV "PhoenAIX". Thrust and power consumption are the most important aspects of a propulsion system's layout. In the initial design phase, manufacturers' data has to be trusted, but the validation of components is an essential step in the design process. This process is presented in this paper. The vertical takeoff system is designed for efficient hover; therefore, performance under static conditions is paramount. Because an octo-copter layout with coaxial rotors is considered, the impact of this design choice is analyzed. Data on thrust, voltage stability, power consumption, rotational speed, and temperature development of motors and controllers are presented for different rotors. The fixed-wing propulsion system is designed for efficient cruise flight. At the same time, a certain static thrust has to be provided, as the aircraft needs to accelerate to cruise speed. As for the hover-system, data on different propellers is compared. The measurements were taken for static conditions, as well as for different inflow velocities, using the FH-Aachen's wind-tunnel. Y1 - 2020 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online ER - TY - CHAP A1 - Kreyer, Jörg A1 - Müller, Marvin A1 - Esch, Thomas T1 - A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude N2 - In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented. Y1 - 2020 U6 - https://doi.org/10.25967/490162 N1 - 68. Deutscher Luft- und Raumfahrtkongress 30.09.-02.10.2019, Darmstadt PB - DGLR CY - Bonn ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham T1 - ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia T2 - Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management N2 - The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - European Framework and South East Asia KW - Technology Transfer KW - Capacity Building Higher Education KW - Malaysian Automotive Industry Y1 - 2020 SN - 978-1-7923-6123-4 SN - 2169-8767 N1 - 2nd African International Conference on Industrial Engineering and Operations Management; Harare, Zimbabwe, December 7-10, 2020 SP - 2970 EP - 2972 PB - IEOM Society International CY - Southfield ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Bertrand, Olivier A1 - Braun, Carsten ED - Vouloutsi, Vasiliki ED - Mura, Anna ED - Tauber, Falk ED - Speck, Thomas ED - Prescott, Tony J. ED - Verschure, Paul F. M. J. T1 - Evaluation of possible flight strategies for close object evasion from bumblebee experiments T2 - Living Machines 2020: Biomimetic and Biohybrid Systems KW - Obstacle avoidance KW - Bumblebees KW - Flight control KW - UAV KW - MAV Y1 - 2020 SN - 978-3-030-64312-6 U6 - https://doi.org/10.1007/978-3-030-64313-3_34 N1 - 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings SP - 354 EP - 365 PB - Springer CY - Cham ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving the px4 avoid algorithm by bio-inspired flight strategies T2 - DLRK2020 - „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ Y1 - 2020 U6 - https://doi.org/10.25967/530183 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. bis 3. September 2020 – Online, „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ ER -