TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Lämmerzahl, W. T1 - Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions JF - Lasers, Clocks and Drag Free Control : Exploration of Relativistic Gravity in Space / by Hansjörg Dittus ..., eds. - ( Astrophysics and Space Science Library ; 349) Y1 - 2008 SN - 978-3-540-34376-9 SP - 379 EP - 398 PB - Springer CY - Berlin [u.a.] ER - TY - CHAP A1 - Gierse, Andreas A1 - Krämer, Stefan A1 - Daab, Dominique J. A1 - Hessel, Joana A1 - Baader, Fabian A1 - Müller, Brigitte S. A1 - Wagner, Tobias A1 - Gdalewitsch, Georg A1 - Plescher, Engelbert A1 - Pfützenreuter, Lysan T1 - Experimental in-flight modal-analysis of a sounding rocket structure T2 - 21st ESA Symposium on Rocket and Ballon related Research Y1 - 2013 SN - 9789290922858 SP - 341 EP - 346 ER - TY - CHAP A1 - Seboldt, Wolfgang A1 - Dachwald, Bernd T1 - Solar sails for near-term advanced scientific deep space missions T2 - Proceedings of the 8th International Workshop on Combustion and Propulsion N2 - Solar sails are propelled in space by reflecting solar photons off large mirroring surfaces, thereby transforming the momentum of the photons into a propulsive force. This innovative concept for low-thrust space propulsion works without any propellant and thus provides a wide range of opportunities for highenergy low-cost missions. Offering an efficient way of propulsion, solar sailcraft could close a gap in transportation options for highly demanding exploration missions within our solar system and even beyond. On December 17th, 1999, a significant step was made towards the realization of this technology: a lightweight solar sail structure with an area of 20 m × 20 m was successfully deployed on ground in a large facility at the German Aerospace Center (DLR) at Cologne. The deployment from a package of 60 cm × 60 cm × 65 cm with a total mass of less than 35 kg was achieved using four extremely light-weight carbon fiber reinforced plastics (CFRP) booms with a specific mass of 100 g/m. The paper briefly reviews the basic principles of solar sails as well as the technical concept and its realization in the ground demonstration experiment, performed in close cooperation between DLR and ESA. Next possible steps are outlined. They could comprise the in-orbit demonstration of the sail deployment on the upper stage of a low-cost rocket and the verification of the propulsion concept by an autonomous and free flying solar sail in the frame of a scientific mission. It is expected that the present design could be extended to sail sizes of about (40 m)2 up to even (70 m)2 without significant mass penalty. With these areas, the maximum achievable thrust at 1 AU would range between 10 and 40 mN – comparable to some electric thrusters. Such prototype sails with a mass between 50 and 150 kg plus a micro-spacecraft of 50 to 250 kg would have a maximum acceleration in the order of 0.1 mm/s2 at 1 AU, corresponding to a maximum ∆V-capability of about 3 km/s per year. Two near/medium-term mission examples to a near-Earth asteroid (NEA) will be discussed: a rendezvous mission and a sample return mission. KW - solar sail KW - low-thrust KW - near-Earth asteroid KW - sample return KW - solar system Y1 - 2003 N1 - Proceedings of the 8th International Workshop on Combustion and Propulsion. Pozzuoli, Italy, 16 - 21 June 2002. ER - TY - CHAP A1 - Dachwald, Bernd ED - Knopf, George K. ED - Otani, Yukitoshi T1 - Light propulsion systems for spacecraft T2 - Optical nano and micro actuator technology Y1 - 2017 SN - 9781315217628 (eBook) SP - 577 EP - 598 PB - CRC Press CY - Boca Raton ER - TY - CHAP A1 - Dachwald, Bernd T1 - Solar sail dynamics and control T2 - Encyclopedia of Aerospace Engineering N2 - Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given. KW - solar sail KW - sailcraft KW - orbital dynamics KW - orbit control KW - attitude dynamics Y1 - 2010 U6 - https://doi.org/10.1002/9780470686652.eae292 PB - Wiley CY - Hoboken ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Mission analysis for an advanced solar photon thruster T2 - 60th International Astronautical Congress 2009, IAC 2009 N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made. KW - Interplanetary flight Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 VL - 8 SP - 6838 EP - 6851 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving the px4 avoid algorithm by bio-inspired flight strategies T2 - DLRK2020 - „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ Y1 - 2020 U6 - https://doi.org/10.25967/530183 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. bis 3. September 2020 – Online, „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ ER - TY - JOUR A1 - Dachwald, Bernd T1 - Optimal Solar Sail Trajectories for Missions to the Outer Solar System JF - Journal of guidance, control, and dynamics. 28 (2005), H. 6 Y1 - 2005 SN - 0162-3192 N1 - 2. ISSN: 0162-3192. - 3. ISSN: 0731-5090 SP - 1187 EP - 1193 ER - TY - JOUR A1 - Thomessen, Karolin A1 - Thoma, Andreas A1 - Braun, Carsten T1 - Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm JF - CEAS Aeronautical Journal N2 - Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9% in city-like worlds and reduces energy consumption by 28%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV. KW - UAV KW - Obstacle avoidance KW - Autonomy KW - Local path planning Y1 - 2023 U6 - https://doi.org/10.1007/s13272-023-00691-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Karolin Thomessen PB - Springer CY - Wien ER - TY - JOUR A1 - Dachwald, Bernd T1 - Optimization of very-low-thrust trajectories using evolutionary neurocontrol JF - Acta Astronautica. 57 (2005), H. 2-8 Y1 - 2005 SN - 0094-5765 SP - 175 EP - 185 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - Solar Sails — Propellantless Propulsion for Near- and Medium-Term Deep-Space Missions / W. Seboldt ; B. Dachwald JF - Advanced Propulsion Systems and Technologies, Today to 2020 / Claudio Bruno (ed.) ... - (Progress in Astronautics and Aeronautics Series ; 223) Y1 - 2008 SN - 978-1-56347-929-8 N1 - ISBN 10: 1-56347-929-X ; American Institute of Aeronautics and Astronautics PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Dachwald, Bernd A1 - Ohndorf, A. T1 - 1st ACT Global Trajectory Optimisation Competition : Results found at DLR JF - Acta Astronautica. 61 (2007), H. 9 Y1 - 2007 SN - 0094-5765 N1 - Global Trajectory Optimization ; Results of the First Competition Organised by the Advanced Concept Team (ACT) of the European Space Agency (ESA) SP - 742 EP - 752 ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Wind-tunnel and CFD investigations of UAV landing gears and turrets – Improvements in empirical drag estimation JF - Aerospace Science and Technology N2 - This paper analyzes the drag characteristics of several landing gear and turret configurations that are representative of unmanned aircraft tricycle landing gears and sensor turrets. A variety of these components were constructed via 3D-printing and analyzed in a wind-tunnel measurement campaign. Both turrets and landing gears were attached to a modular fuselage that supported both isolated components and multiple components at a time. Selected cases were numerically investigated with a Reynolds-averaged Navier-Stokes approach that showed good accuracy when compared to wind-tunnel data. The drag of main gear struts could be significantly reduced via streamlining their cross-sectional shape and keeping load carrying capabilities similar. The attachment of wheels introduced interference effects that increased strut drag moderately but significantly increased wheel drag compared to isolated cases. Very similar behavior was identified for front landing gears. The drag of an electro-optical and infrared sensor turret was found to be much higher than compared to available data of a clean hemisphere-cylinder combination. This turret drag was merely influenced by geometrical features like sensor surfaces and the rotational mechanism. The new data of this study is used to develop simple drag estimation recommendations for main and front landing gear struts and wheels as well as sensor turrets. These recommendations take geometrical considerations and interference effects into account. Y1 - 2020 U6 - https://doi.org/10.1016/j.ast.2020.106306 SN - 1270-9638 VL - 107 IS - Art. 106306 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Peloni, A. A1 - Ceriotti, M. A1 - Dachwald, Bernd T1 - Preliminary trajectory design of a multiple NEO rendezvous mission through solar sailing T2 - Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014 Y1 - 2015 SN - 978-1-63439-986-9 SP - 5352 EP - 5366 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Kapoor, Hrshi A1 - Braun, Carsten A1 - Boller, Christian ED - Casciati, Fabio T1 - Modelling and optimisation of maintenance intervals to realize structural health monitoring applications on aircraft T2 - Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM] Y1 - 2010 SN - 978-1-60595-024-2 SP - 55 EP - 63 PB - DEStech Publ. CY - Lancaster, Pa. ER - TY - JOUR A1 - Hein, Andreas M. A1 - Eubanks, T. Marshall A1 - Lingam, Manasvi A1 - Hibberd, Adam A1 - Fries, Dan A1 - Schneider, Jean A1 - Kervella, Pierre A1 - Kennedy, Robert A1 - Perakis, Nikolaos A1 - Dachwald, Bernd T1 - Interstellar now! Missions to explore nearby interstellar objects JF - Advances in Space Research N2 - The recently discovered first hyperbolic objects passing through the Solar System, 1I/’Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system. KW - Interstellar objects KW - Trajectories KW - Missions Y1 - 2022 U6 - https://doi.org/10.1016/j.asr.2021.06.052 SN - 0273-1177 VL - 69 IS - 1 SP - 402 EP - 414 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dachwald, Bernd A1 - Ball, Andrew J. A1 - Ulamec, Stephan A1 - Price, Michael E. T1 - A small mission for in situ exploration of a primitive binary near-Earth asteroid / Ball, Andrew J. ; Ulamec, Stephan ; Dachwald, Bernd ; Price, Michael E. ; [u.a.] JF - Advances in Space Research. 43 (2009), H. 2 Y1 - 2009 SN - 0273-1177 SP - 317 EP - 324 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Thoma, Andreas A1 - Gardi, Alessandro A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving local path planning for UAV flight in challenging environments by refining cost function weights JF - CEAS Aeronautical Journal N2 - Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10%. KW - Bio-inspired systems KW - Path planning KW - Obstacle avoidance KW - Unmanned aerial vehicles Y1 - 2024 U6 - https://doi.org/10.1007/s13272-024-00741-x SN - 1869-5590 (eISSN) SN - 1869-5582 N1 - Corresponding author: Andreas Thoma PB - Springer CY - Wien ER - TY - CHAP A1 - Dachwald, Bernd T1 - Global optimization of low-thrust space missions using evolutionary neurocontrol T2 - Proceedings of the international workshop on global optimization N2 - Low-thrust space propulsion systems enable flexible high-energy deep space missions, but the design and optimization of the interplanetary transfer trajectory is usually difficult. It involves much experience and expert knowledge because the convergence behavior of traditional local trajectory optimization methods depends strongly on an adequate initial guess. Within this extended abstract, evolutionary neurocontrol, a method that fuses artificial neural networks and evolutionary algorithms, is proposed as a smart global method for low-thrust trajectory optimization. It does not require an initial guess. The implementation of evolutionary neurocontrol is detailed and its performance is shown for an exemplary mission. KW - Evolutionary Neurocontrol KW - Spacecraft Trajectory Optimization KW - Low-Thrust Propulsion Y1 - 2005 SP - 85 EP - 90 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Solar Sailing Kinetic Energy Impactor (KEI) Mission Design Tradeoffs for Impacting and Deflecting Asteroid 99942 Apophis JF - AIAA Guidance, Navigation, and Control Conference & Exhibit - AIAA Atmospheric Flight Mechanics Conference & Exhibit - AIAA Modeling and Simulation Technologies Conference & Exhibit - AIAA/AAS Astrodynamics Specialist Conference & Exhibit : [21 - 24 August 2006, Keystone, Colorado ; papers]. - (AIAA meeting papers on disc ; [11.]2006,19-20 ) Y1 - 2006 SN - 1-56347-802-1 N1 - American Institute of Aeronautics and Astronautics ; American Astronautical Society ; AIAA/AAS Astrodynamics Specialist Conference & Exhibit <2006, Keystone, Colo.> ; AIAA paper number: AIAA-2006-6178 SP - 1 EP - 20 PB - American Institute of Aeronautics and Astronautics CY - Reston, Va. ER -